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ABSTRACT
Large-scale data storage requirements have led to the de-

velopment of distributed, non-relational databases (NoSQL).

Single-dimension NoSQL achieves scalability by partitioning

data over a single key space. Queries on primary (“key”) prop-

erties are made efficient at the cost of queries on other prop-

erties. Multidimensional NoSQL systems attempt to remedy

this inefficiency by creating multiple key spaces. Unfortu-

nately, the structure of data needs to be known a priori and
must remain fixed, eliminating many of the original benefits

of NoSQL.

This paper presents three techniques that together enable

query-efficient partitioning of dynamic data. First, unispace
hashing (UH) extends multidimensional hashing to data of

unknown structurewith the goal of improving queries on sec-

ondary properties. Second, compression formulas leverage

user insight to address UH’s inefficiencies and further accel-

erate lookups by certain properties. Third, formula spaces use

UH to simplify compression formulas and accelerate queries

on the structure of objects. The resulting system supports

dynamic data similar to single-dimension NoSQL systems,

efficient data queries on secondary properties, and novel

intersection, union, and negation queries on the structure of

dynamic data.
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1 INTRODUCTION
Scalability requirements during the last decade have led

to the development of distributed, non-relational databases
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var ac = {
 username: "aph",
 first: "Alyssa",
 last: "Hacker"
};
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Figure 1: A dynamic object with three properties (left).
Four servers partitioning similar objects by (middle)
username; (right) first-last.

1D HH UH

Dynamic Object Structure ✔ ✘ ✔

Efficient Search on “Secondary” Properties ✘ ✔ ✔

No Dimension-to-Node Mapping ✔ ✘ ✔

No Bounds on Number of Nodes ✔ ✘ ✔

Queries on Structure (e.g., Union, Intersection) ✘ ✘ ✔

Table 1: Summary of features: (a) 1D (single-
dimension NoSQL), (b) HH (Hyperspace Hashing)
(c) UH (Unispace Hashing).

(NoSQL). Single-dimension NoSQL [5, 11, 18] divides data

into partitions over the dimension of a “key” property whose

values are unique for each object (Fig. 1 middle). Since the

partitioning scheme depends only on a single property, the

structure of the rest of the object (i.e., its “secondary” prop-
erties) does not need to be known a priori nor does it need
to remain fixed. Data can be dynamic and have their struc-

ture change during the program’s runtime. This flexibility

worked well with dynamic programming languages (e.g.,
Ruby, Python, JavaScript, PHP) and interchange formats (e.g.,
XML, JSON) popular in application development. However,

an inability to exploit structure means that queries on prop-

erties other than the primary key become inefficient, as all

partitions must be searched.

Multidimensional key-value stores, as pioneered by Hy-

perdex [6], attempt to remedy this problem by partitioning

on multiple dimensions (Fig. 1 (c)). To create such a hyper-

space, however, the system depends heavily on structure: it

requires a priori knowledge of the structure of objects, it does
not support changes to the object’s properties, and needs to

maintain a mapping from regions of a property’s values to

underlying nodes on the side.

https://doi.org/10.1145/3124680.3124744
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The goal of our work is to enable efficient partitioning and

querying of dynamic data using three techniques. Unispace
hashing is a generalization of hyperspace hashing [6] that

uses property names to identify which dimensions an object

represents. This enables support for dynamic data and accel-

erated queries on secondary properties, but does not make

ideal use of the available space of dimensions (§3). There-

fore, compression formulas can be used to tune space use by

configuring queryable dimensions at the granularity of indi-

vidual objects. Formulas bring many benefits (§4), but their

use needs to be consistent between all operations targeting a

specific object. To alleviate this potential for inconsistencies,

the system employs formula spaces (§5): it takes advantage
of the fact that formulas are themselves dynamic objects to

store and query them, adding a layer of indirection between

their description and their use. This additional layer can be

used to accelerate queries on the structure of dynamic ob-

jects (e.g., unions, intersections). The resulting hybrid aims to

support dynamic data similar to single-dimension NoSQL, ef-

ficient data queries on secondary properties similar to multi-

dimension NoSQL, and novel queries on the structure of

stored data (§7).

2 BACKGROUND AND NOTATION
Consider four nodes with ids n1 to n4; a function H (s ) that
maps strings to nodes ni ; and an object ac that we want

to store to one of our nodes. For now, we can think of

H (s ) = h(s )%4, where h is a hash function. Objects are sets

of properties: each property is a pair of a property name and
a property value. In Fig. 1, the ac object has three properties:

username, first, and last.

One of these properties takes values that are – or can be

made – unique across all objects (e.g., username). This prop-
erty is often termed “key” in the distributed key-value store

literature and is used to partition the data on a single di-

mension (Fig. 1 mid). Assuming the same nodes and “key”,

operations by “key” require contacting a single node, namely

H (ac.username). The result is independent of the node re-
ceiving the request, independent of the property names and

overall structure of the object, and is achieved without main-

taining any indices or side-structures. Unfortunately, how-

ever, searching by other properties (e.g., first, last, or both)
requires contacting every node.

Hyperspace hashing [6] is a generalization of the previous

idea to multiple dimensions. Assuming first and last are

enough to uniquely identify an object, it partitions the two-

dimensional plane into the four nodes n1 to n4 (Fig. 1 right).
Insertion and retrieval require contacting the node at co-

ordinates (H (ac.first),H (ac.last)). Retrieval by partially-

specified queries on secondary attributes is still more efficient

than exhaustive search: to return all "Hacker"s, the system

needs to contact only half of the nodes (shaded area). The

system successfully solves queries on secondary attributes,

but requires a priori knowledge of object structure, disallows
changes to the number, names, and types of its properties,

and maintains an explicit, centralized mapping from dimen-

sions to nodes. Moreover, since partitioning is determined

statically, changes in the number of available nodes may

render the partitioning scheme void.
1

Based on the previous discussion, our scheme has to solve

three main challenges (Table 1): (i) handle objects whose

structure is not known beforehand, (ii) provide efficient

queries on “secondary” properties, and (iii) remove the need

of a mapping from dimensions to nodes. A solution should

not pose any requirements on the number of nodes (e.g., work
on a single node) to ensure use in any environment. Finally,

since all objects are dynamic, it should offer efficient queries

on their structure (e.g., return all objects with a property

name “model”).

3 UNISPACE HASHING
The core technique is an extension to hyperspace hashing.

To allow querying, each object is represented as a point in a

multi-dimensional space. As with hyperspace hashing, the

coordinate for each dimension is determined by hashing

the object’s property values. Unlike hyperspace hashing,

dimensions are determined by hashing the object’s property

names.
All operations draw deterministically from a set of dimen-

sions D with size |D |. For now, we assume a fixed number r
of regions (nodes) per dimension. In single-dimensional sys-

tems r can be thought as the number of nodes in the cluster.

We will later use r to assign multiple regions per physical

server as a way to “even out” differences in the server’s rela-

tive capabilities. Hashing the name of each property returns

an integer from 0 to |D | − 1. Using this number to index in D
returns a dimension Di . Hashing the value of the property

corresponding to this name returns a value from 0 to r − 1.
This is the coordinate value for dimension Di . Coordinate

values for dimensions corresponding to property names that

are not present get a default value of 0. Coordinate values

for dimensions whose property values are unknown get the

full range of values in r .
Insertions and updates require fully-specified objects. That

is, the value of each property needs to be present in order to

determine the location of the object. Queries and deletions

fill unknown coordinates with wildcards: they will need to

search all regions that fall under the values of a specific

dimension.

1
This is different from fault tolerance: there might not be enough nodes to

even partition the data! In our example, if node n3 did not exist, the scheme

collapses because there are not enough servers to support the required

dimensions.
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To illustrate insertion and query, we will be using the ac

object from Fig. 1, an r of three regions per dimension, and

a 10-dimensionalD. The put(ac) operation inserts ac into the
database. It first calculatesh("username")%10,h("first")%10,
and h("last")%10, all integers in the range from 0 to 9, in-

clusive. It then calculates h("aph")%3, h("Alyssa")%3, and
h("Hacker")%3, all integers in the range from 0 to 2, inclu-

sive. Suppose the first set of results is 3, 4, and 8 respectively;

and the second is 1, 1, 2. The coordinate vector is the follow-

ing:

[0, 0, 0, 1, 1, 0, 0, 0, 2, 0]

The get({username: ANY, first: "Alyssa", last: ANY})

operation looks for all objects with an attribute of name

first whose value is "Alyssa" and any username and last

property. The resulting coordinate vector requires looking

into all regions with coordinates:

[0, 0, 0, {0-2}, 1, 0, 0, 0, {0-2}, 0]

It will only search within nine out of 59,049 regions. If we

want to look for similar objects that either do not have a user-

name or have a username of “aph”, the respective operations

are get({first: "Alyssa", last: ANY}) and get({username:

"aph", first: "Alyssa", last: ANY}) resulting in the fol-

lowing coordinate vectors:
2

[0, 0, 0, 2, 1, 0, 0, 0, {0-2}, 0]

[0, 0, 0, 0, 1, 0, 0, 0, {0-2}, 0]

Each one of them will only hit three different regions.

It is important to note that this scheme works identically

with any number of physical nodes. That is, it hides the

distinction between distributed and non-distributed regions.

For example, with a single node, regions can correspond to

memory partitions. Tessellation, the process of assigning

regions within a dimension to storage buckets (i.e., IDs –
they could refer to nodes or memory cells), can be done

dynamically during runtime as long as all nodes agree on the

same ordering of IDs. This is the only agreement required

upon system startup or reconfiguration.

4 COMPRESSION FORMULAS
Unispace hashing as presented in §3 solves the challenges

enumerated in Table 1. However, issues remain:

• It severely penalizes properties that can uniquely identify

an object (e.g., the “key” property). Using the previous

examples, a query that only includes username should be

enough to return a single node. Instead, it just reduces the
search space by an order of magnitude (in base r ). In fact,

we need a fully-specified query to fill a single coordinate

vector completely and get a single node – but then, we

already have the object we are looking for!

2
Suppose h ("aph")%3 results in 2.

• It wastes dimensions for properties not used for queries.

Usually, there exist properties that are used only after the
result is retrieved, but are never as exact search terms. Ex-

amples include multi-word text, template metadata, multi-

media, lists of property values, and methods (code). Even

if we wanted to search within some of these types, they

require special pre-processing.

• It assigns equal query priority to all properties. Given a

specific number of nodes, users should be able to accelerate

selected queries at the expense of others. For example, it

is more common to look up people based on their first and

last name, and less common to look them up by eye color.

These issues require user insight, which is supplied by

augmenting all operations with a second argument speci-

fying a compression formula. For instance, users can insert

objects using put(obj1, ϕ1) and query using get(q1, ϕ1).

Formulas are configuration objects that specify structural

preferences at the level of individual objects. They instruct

the system on how to (re)construct the coordinate space on

each operation. The q1 argument above does not need to

include wildcard properties (e.g., ANY) of an object any more.

Knowledge about which dimensions contain known values,

which contain wildcards, and which are not even indexed

can all be expressed using the second argument, formula ϕ1.

Compression formulas are centered around three configu-

ration parameters: queryable dimensions, weights, and space

overlays.

Queryable Dimensions At the very least, users can specify a
subset of dimensions that are important for queries. To locate

where to place the object, the system will run the scheme

described in the previous section only on the dimensions

specified in this subset. If any of the properties specified

does not exist, it will get a value of 0. The following formula

is equivalent to setting a username as a primary key in a

distributed key-value store.

{ space: ["username"] };

Weights Users can specify the relative ratio of regions per

dimension between the dimensions they plan to index. A

higher number of regions for a property means that queries

with this property will be serviced more efficiently. The ex-

ample formula below specifies that queries on first should

be twice as efficient as queries on last.

{ space: {"first": 4, "last": 2} };

Space Overlays Users can create multiple overlays that

are optimized for different types of queries. Each overlay

can either contain a copy of the object or a pointer to a sin-

gle location for this object (specified by, say, hashing all its

contents). Since updates to any of its values changes the

location of the object for all overlays that include updated

values, the former is ideal for read-heavy systems and the
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var ac_f = [
 "username",
 "ssn",
 { "first": 4,
   "last": 2 }
];

n1 n2 n3 n4 n5 n6 n7 n8

n1 n2

n5 n6

n2 n4

n7 n8

n1 n2 n3 n4 n5 n6 n7 n8

Figure 2: Three space overlays resulting from a com-
pression formula.

latter for write-heavy systems. For queries that touch multi-

ple overlays, the system can process queries with the goal

of querying the smallest number of regions. The example

below specifies three overlays; the previous two, and a third

one for ssn:

{ spaces: [

{ space: ["username"] }, { space: ["ssn"] }

{ space: {"first": 4, "last": 2} }

]}

Fig. 2 illustrates the resulting spaces, and a more concise

syntax actually used by the system today. If the ac object

from Fig. 1 was updated to include, say, a notes property,

none of the resulting spaces would use it to index ac.

Formulas have several features. They are dynamic: they

can be generated during runtime for individual objects. They

are also optional; if no formula is provided, the system will

still operate as described in the previous section — at a possi-

bly non-ideal configuration. Finally, they maintain the pure,

deterministic nature of operations: given (a) a set of nodes

(implicitly), (b) a data or query object (as before), and now

(c) a compression formula (new), the system will return the

same node independently of the node receiving the request.

5 FORMULA SPACES
So far our scheme solves the problems as posed (Table 1);

and by taking advantage of user insight, it makes judicious

use of available resources. However, the use of compression

formulas introduces several inconveniences. These can be

grouped into two main categories:

• Formula Management: Even though formulas are optional,

a use upon insertion requires the exact same formula upon

query, update, and deletion of the same object. Moreover,

users need to manage formulas explicitly and make sure

to save and retrieve them between system interruptions.

• Overlay Reconstruction: The introduction of overlaysmakes

property-based searching more complicated as it requires

knowledge about (i) which overlays include a specific prop-

erty and (ii) how to reconstruct them, in order to locate

the objects. This requires access to all formulas across the

system that include a specific property.

It becomes clear that the system needs to store formulas

and make their retrieval on secondary attributes efficient.

But formulas are themselves dynamic objects, therefore the

system can store and query them using the schemes already

described. It can use indexable dimensions to avoid indexing

metadata that are stored along with the formulas such as

inverted indices. It can also use several overlays to accelerate

operations on objects that have the structure of a formula.

The next few paragraphs explain the details.

Identifiers First, formulas get a property named ID. Its value

is unique and is used to distinguish between different formu-

las. IDs can be thought as distributed pointers for naming

formulas: normal operations are overloaded to also accept

a string in place of a formula argument, which is used to

locate and retrieve the formula.

Identical IDs mean identical sets of properties for the for-

mula object. Users can assign human-meaningful IDs such as

“Car”, or “specialCarInstance”. If not provided by the user, IDs

are generated by the system using the formula’s property

names as input. In both cases, users can query or update

them similar to any other object. The system also optimizes

ID-based operations by using a dedicated space overlay with

a single dimension.

The following example shows the use of formula IDs. Sup-

pose we store the following formula:

var cf = {id: "cf_user", spaces: {...}};

put(cf); // insert formula to DB

Then the following two statements are semantically equiva-

lent:

put(obj , cf); put(obj , "cf_user");

The first will run as if the formula was given verbatim. The

second will first retrieve the formula and then run the oper-

ation.

Inverted Formulas To facilitate quick lookup of formulas

by property, the system maintains a distributed map from

object-properties to formulas containing these properties.

It partitions this map by object-property name on a single

dimension (_SYS_PROP on Fig. 3 left). By retrieving formulas,

the system can reconstruct each space overlay with its own

dimensions, coordinates, and weights.

Inverted formulas are particularly useful for searching for

all objects that contain a specific property, independently
of the formula used to store them. For example, the follow-

ing operation will return all objects that include a property

named first regardless of formula used:

get({first: ANY});

Structural Queries Since the system is already storing com-

pression formulas, we can use the inverted formula space to

efficiently answer union, intersection, and negation queries

on dynamic data. These queries now amount to getting all
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function union(propertyList):
 formulaSet = new Set();
 for (p in propertyList):
   F = get({_SYS_PROP: p}, "-1");
   for (f in F):
     if (f.containsAny(propertyList)):
       formulaSet.add(f)
 return formulaSet;

function intersection(propertyList):
 formulaSet = new Set();
 for (p in propertyList):
   F = get({_SYS_PROP: p}, "-1");
   for (f in F):
     if (f.containsAll(propertyList)):
       formulaSet.add(f)
 return formulaSet;

∧ ∨

Figure 3: Use of inverted formulas and queries on structure. Union returns ϕ2, ϕ8, and ϕ5; intersection returns ϕ2.

the formulas that include the properties needed and run-

ning a union or intersection on them. This returns only the

spaces that are guaranteed to contain the properties the user

cares about. The pseudocode in Fig. 3 shows how union and

intersection queries are handled at the formula space.

This is a lot more efficient than querying the data objects

for several reasons: (i) there is a smaller number of formulas,

as they get reused for multiple objects (e.g., all objects that
look like “car” share the same formula); (ii) formulas are

much smaller than the data objects they describe (i.e., on
the order of an object’s queryable property names only);
(iii) the resulting object is guaranteed to have the requested

structure.
3

6 PROTOTYPE IMPLEMENTATION
Since the focus of this work is dynamic data, we chose to im-

plement our prototype in JavaScript, a widely used dynamic

programming language built around prototypes. JavaScript

has first-class support for JSON for data interchange, which

we use to serialize, store, and query data.

We built our prototype on top of Andromeda [23], a sys-

tem aimed at simplifying the development of large-scale,

distributed, general-purpose applications. The hosted ver-

sion of Andromeda runs each node as a userspace process.

Node management, synchronization, and communication

are handled by Andromeda’s built-in services. Low-level in-

ternals are handled by Node.js [4], a runtime that bundles

(i) Google’s V8, a fast JIT compiler, (ii) libUV, cross-platform

wrappers for file-system and network operations, and (iii)

several standard libraries, including OpenSSL used for hash-

ing (SHA512). Andromeda currently exposes a variant of

rendez-vous hashing [22] instead of the more common con-

sistent hashing [10].

Excluding all Andromeda code, the current prototype is

approximately 900 lines of code. It uses TCP for both lo-

cal and remote communication. It exposes four methods

3
In general, most dynamically-typed languages behave like structurally-

typed languages. Under a structural-subtyping [16] lens then, a more precise

statement would be that these queries return all the objects that are struc-

tural subtypes of or structurally-equivalent with the query object.

(put, get, patch, and del) that follow an asynchronous pro-

gramming style accessible through service named uni (i.e.,
andromeda.uni.*).

Unispace hashing (§3) and the queryable-dimensions as-

pect of formulas (§4) are implemented as described in this

paper. Several other features are not completely implemented

(e.g., weight and overlay formulas (§4), and have only partial

support for formula spaces (§5)). Transactional semantics

is also handled by the application’s control layer, not the

storage layer.

A challenge is race conditions potentially affecting the

formula storage. Insertion, update, and delete operations

on data have the potential of updating the stored formu-

las, but care needs to be taken as formula updates need to

be isolated and atomic. Instead of locking, reading, updat-

ing, and unlocking the relevant inverted map state, remote

nodes send functions that get interleaved using a cooperative

multi-tasking scheme. The cooperative scheduling scheme

guarantees isolation and atomicity, and minimizes associated

overheads. In practice, inverted maps get only a fraction of

the updates that data objects get.

7 PRELIMINARY EVALUATION
We explored (i) the sources of potential overheads and their

impact, and (ii) the characteristics of dynamic workloads.

Evaluation Setup: The development version of Andromeda

that was used came with Node.js 6.9.1 and was bundled with

V8 v.5.1.281.84, libUV v.1.9.1, and OpenSSL v.1.0.2j. Experi-

ments were run on a Linux server with 512GB of memory

and 160 hyper-threaded cores running at 2.27 GHz. For all the

experiments, we spawn 32 nodes as processes on the same

machine, and store data in a memory-backed file-system.

To understand the sources of overheads, we synthesize

read/write micro-benchmarks with formulas of increasing

complexity (1-5 dimensions). We use 1M calls of randomly-

generated objects that contain an average of five properties

per object, 10-character property keys and 100-character

property values.

To understand the properties of more dynamic workloads

and see whether our proposed system would be a good fit,

we use DBLP’s 2GB bibtex database [12] as a more realistic,

dynamic workload. We convert 307,780 bibtex entries to
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JSON objects and replace all multi-word property values

with single-word equivalents to simplify query generation.

Micro-benchmarks: With a single dimension, similar to

single-dimension key-value stores, our prototype system

averages a throughput of 125950.78 and 154660.45 objects

per second for writes and reads (i.e., fully-specified queries),

respectively. Average latencies are 12.57ms and 10.26ms at

full throughput, respectively.

Each extra indexable dimension adds a 0.1–0.2% through-

put and 0.5–0.8% latency overhead. To highlight potential

bottlenecks, we used statistical CPU profiling (DTrace) in

the five-dimensional case. It revealed that most of the time is

spent on IPC/network functions (76.18%) and not in database

activity.
4

Within a single node and excluding IPC/network and se-

rialiation/deserialization overheads, microbenchmarks in-

dicate that hashing is a considerable source of overhead

(18.26%). Since SHA512 is a cryptographic hash function, it

wastes too many resources for guarantees that are not useful

in our setting. We tried a portable, JavaScript-only version

of SipHash [1] as a candidate for a fast, collision-resistant,

non-cryptographic hash function. Unfortunately, the results

of hashing 23588700 strings (averaging a length of 9.569

characters each) were not as promising: the built-in SHA512

takes a total of 655.34ms, whereas SipHash takes 2825.230ms.

As a point of comparison, TweetNaCl’s [3] JavaScript-only

SHA512 takes 4364.860ms. The big takeaway here is that

crypto-to-non-crypto improvement is only 1.5× when the

JITed-to-built-in is 4.3×. The main drawback of adding a

native non-crypto function is a serious loss of portability.

Another approach would be to offload computation to

clients. Most of the computation of identifying which node

is responsible for a value (e.g., tessellation and hashing)

is pure (§4). We isolated parts of the code that compute

the tessellation and coordinate results (roughly 500LoC of

JavaScript) and wrapped themwith a small RESTful interface

(another 100LoC). Using this client library, different clients

can independently compute the result of which server to con-

tact. The results seem promising: using the previous experi-

ment, the server goes from fully-saturated to non-saturated.

The main challenge of client offloading is keeping in-sync

with changes in the node topology.

DBLP Bibliography Database: The DBLP workload high-

lighted a number of interesting properties. First, most of the
entries aremostly the same: 61% of the properties of each ob-

ject (roughly 6) are common between 99.99% of objects; 28%

of them are common between 95% of the objects; and 11%

is only rarely shared between objects. Moreover, all of the

objects have a "key" property that can be used to uniquely

4
As a point of comparison, raw process-to-process data exchange via TCP

averages a throughput of 188.1MB/s and a latency of 5.8 – 12.6ms on the

host where the experiments were run.

identify each entry. Finally, the union turns out to have more

than 30 properties – a prohibitive amount for any system

based on single-space, multi-dimensional hashing.

A problem with static multi-dimensional hashing à la Hy-

perdex [6] is that it requires going through the whole dataset

and identifying the union of all properties. This is not possi-

ble when objects are being added dynamically, as in DBLP.

Even in the case of our experiment with only a static snap-

shot, processing the dataset to calculate the union takes

several seconds. Moreover, although Hyperdex supports sub-

spaces, there is no way to set “don’t-care” properties or “up-

grade” to more dimensions. A system such as Redis [18] has

none of these problems as it supports dynamic data with-

out any special configuration, but does not support efficient

queries on secondary properties, pervasive in the case of

DBLP.

8 RELATEDWORK
High-dimensional database techniques have been of interest

to the data-base and data-structure communities for decades

(e.g., k-d trees [2], R-trees [8], the grid file [14], z-order [15],

R+-trees [19] ). They either require a static object (i.e., table)
structure [14, 15] or, more commonly, adapt on the data they

see [2, 8], which makes straightforward distribution very

difficult.

Other lines of work [7, 9, 13] focus on reducing dimen-

sionality down to a single dimension to then enable single-

dimension partitioning schemes. Space-filling curves [13]

do this, for example, by tracking a single curve through all

regions of a multi-dimensional space. This is a promising

direction for dealing with very high dimensionality, and is

somewhat similar in spirit to mapping a multidimensional

matrix into a single region of physical memory, as done in

our system. However, scalabilitymay be hindered by (i) multi-

dimensional queries partitioned into single-dimensional ranges

of different sizes, and (ii) space regions falling under multiple

nodes.

Locality-preserving hashing [9] and locality-sensitive hash-

ing [7] offer multi-dimensional range and nearest-neighbor

(i.e., fuzzy, wildcard) queries. However, since they are sen-

sitive to data for preserving locality, they do not offer good

load-balancing features. In some cases, space partition is

based on previously-seen data – so different nodes might

have inconsistent views of the space – and offer only approx-

imate guarantees [7].

On the other hand, distributed hashing techniques provide

uniform load balancing without depending on previously-

seen data. Somewhat more complex hashing schemes (e.g.,
rendez-vous hashing [22], consistent hashing [10]) can mini-

mize data shuffling in dynamically-changing systems. These

ideas have been used in various settings (e.g., P2P [17, 20])

and led to the revolution of distributed, single-dimensional



Query-efficient Partitions for Dynamic Data APSys ’17, September 2, 2017, Mumbai, India

(i.e., key-value) NoSQL storage systems (e.g., Dynamo [5],

Redis [18], Cassandra [11]). Hyperdex [6] improved on the

idea in many ways (§2). Our work extends Hyperdex’s par-

titioning technique, namely hyperspace hashing, for data

whose structure is not known beforehand and can change

during runtime. Replication and consistency are orthogonal

issues and can be served by schemes complementary to ours

(e.g., Hyperdex [6], Replex [21]).

9 CONCLUSION
This paper addresses the problem of using dynamic data

in distributed storage settings where query efficiency on

secondary properties is a primary concern. It uses three

complementary techniques that together aim to support dy-

namic data similar to single-dimension NoSQL, efficient data

queries on secondary properties similar to multi-dimension

NoSQL, and novel queries on the structure of stored data.
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