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ABSTRACT

In serverless computing, applications are composed of stand-alone
microservices that are invoked and scale up independently. Peer-
to-peer protocols can be used to enable decentralized communica-
tion among the services that compose each application. This paper
presents THEMIS, a framework for secure service-to-service interac-
tion targeting these environments and the underlying service mesh
architectures. THEMIS builds on a notion of decentralized identity
management to allow confidential and authenticated service-to-
service interaction without the need for a centralized certificate
authority. THEMIS adopts a layered architecture. Its lower layer
forms a core communication protocol pair that offers strong se-
curity guarantees without depending on a centralized point of
authority. Building on this pair, an upper layer provides a series of
actions related to communication and identifier management—e.g.,
store, find, and join. This paper analyzes the security properties
of THEMIS’s protocol suite and shows how it provides a decen-
tralized and flexible communication platform. The evaluation of
our THEMIS prototype targeting serverless applications written
in JavaScript shows that these security benefits come with small
runtime latency and throughput overheads, and modest startup
overheads.
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1 INTRODUCTION

Serverless computing [20, 21] is a recent approach to cloud com-
puting that simplifies the development and use of cloud resources.
Serverless applications are comprised of stand-alone microservices
that interact with each other in a peer-to-peer (P2P) fashion: each
microservice is responsible for only a small fraction of the applica-
tion functionality, and can thus be invoked, be passed parameters,
and scale-up independently. A service mesh [15, 24] is a dedicated in-
frastructure layer that allows communication among microservices,
which can belong to different deployment clusters of container
platforms (e.g., Kubernetes [5]).

Existing service meshes enable microservice communication by
adopting a centralized architecture—microservices can authenticate
and discover each other by communicating with central registries.
Relying on central registries to administrate the microservice com-
munication provides a clear and straightforward administration.
However, it makes it challenging to support open cloud platforms
creating vendor lock-in issues. Allowing microservices to commu-
nicate in an ad-hoc manner can facilitate the incorporation of ma-
chines/services that belong to different federated domains, whereas
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the lack of dependency on a central communication link can allow
the deployment of serverless applications in dynamic edge (e.g.,
I0T) and volatile (e.g., disaster zones) environments [25].

This work presents THEMIS, a secure general-purpose abstraction
overlay suitable to any application that demands point-to-point
communication but particularly tailored to the service mesh infras-
tructures underpinning today’s serverless environments. THEMIS
is a framework built on a notion of decentralized identity man-
agement to allow secure service-to-service interaction when the
connection to a central registry might not always be available,
addressing underlined design flaws in the security of state-of-art
service meshes [19].

THEMIS’s design achieves security, extensibility, and service dis-
covery in microservice communication featuring a two-layer pro-
tocol architecture. Its lower layer consists of two protocols that
provide authenticity, confidentiality and integrity to the communi-
cated messages. Its upper layer builds on the previous protocol pairs
to provide a series of P2P communication and identifier manage-
ment actions. We prove the low-level protocols secure in a strong
adversary model, and discuss the resulting security properties of
the upper level protocols. We further describe how THEMIS can
serve as a building platform for a service mesh application.

Our THEMIS prototype leverages the ubiquity of JavaScript pow-
ered runtime environments in serverless platforms, and is available
to modern applications as an open-source library. We evaluate
THEMIS on eight end-to-end serverless applications, as well as a
number of microbenchmarks targeting standalone serverless op-
erations. The key take-away from the evaluation is that the per-
formance overhead of THEMIS (compared to an insecure baseline
implementation) is minimal, while still providing all the security
benefits described by our design. Our contributions can be summa-
rized as follows:

Security Protocols: We propose two novel protocols for key agree-
ment and subsequent secure communication that leverage the
self-certifying identities of the participating nodes. This way we
do not depend on a centralized root of trust like a traditional
certificate authority.

Model and Proofs: We provide a detailed security analysis of the
security guarantees of our protocols. Specifically, we prove that
they achieve authentication, confidentiality and integrity for all
the exchanged messages.

High-level Operations: We specify five key operations, i.e., find,
store, join, update and leave that nodes execute to maintain
a structured overlay organization. Leveraging these building
blocks THEMIS achieves service discovery and extensibility in
a fully decentralized manner. We also elaborate on the security



properties that hold against several common classes of attacks
that target this P2P structure.

e Open-source Implementation: We implement THEMIS in about
3.3K lines of JavaScript, as a pluggable application library called
Themis for building serverless applications. The Themis library
takes care of initialization and communication across a number
of common protocol configurations—e.g., TCP and HTTP. We
provide an open-source release of THEMIS's implementation, the
example code and benchmarks presented, as well as evaluation
scripts at github.com/xxx/themis and npmjs.org/xxx/themis.!

o Empirical Evaluation: We evaluate THEMIS's characteristics across
eight serverless applications as well as targeting microbench-
marks scaling between 1-1,000 nodes. THEMIS’s security benefits
come at a small-to-imperceptible cost in terms of runtime perfor-
mance and only modest cost in terms of lines of code changed.

2 RELATED WORK

Applying a P2P architecture to enable secure service-to-service
communication in serverless environments is a relatively new area
of research. Existing service meshes [1, 2, 4] follow a centralized
architecture, where dedicated registries forming the control plane
are responsible for coordinating the microservice proxies of the
data plane. Consul [16] adopts a more decentralized approach by
using the Raft consensus protocol to distribute cluster state that is
centrally maintained by the quorum leader node. The work in [25]
also relies on service registry to store data regarding registered ser-
vices; the registry acts as a DNS server resolving human-readable
names to services hashes that can be queried on top of a Distributed
Hash Table (DHT) structure. THEMIS provides a holistic decentral-
ized design where the information concerning the nodes and the
application-specific data, e.g., microservices, they provide are stored
on the DHT nodes themselves obliviating the need for a service
registry. However, rather than having the DHT table store the data
itself such as IPFS [8], it only stores the pointer(s) (i.e., node identi-
fier(s)) of the node(s) that claims to be holder(s) for that data. As
such, THEMIS avoids several challenges at the cost of an additional
indirection—e.g., value staleness, continuous or infinite streams,
and redistribution over heterogeneous deployments.

A previous generation P2P architectures addressed scalability
problems outside the serverless computing domain—e.g., Chord [36],
Kademlia [28]. The distributed nature of these architectures exposes
them inherently to important attacks [38, 39], and thus many exten-
sions provide authentication in distributed systems using a single
root of trust [13, 14] or identity-based cryptography [12, 26]. Other
works try to overcome single points of failure by using threshold
cryptography [6, 34], consensus protocols [31, 32] and reputation
mechanisms [11, 18]. THEMIS focuses on decentralized identity
management, where nodes can directly authenticate themselves
on their own without being previously paired with another entity;
thus, THEMIS does not necessitate the support of a public key infras-
tructure (PKI) as done in QUIC [27] and mTLS [23]—the protocol
adopted by the majority of service meshes.

To provide authentication THEMIs uses self-certifying identi-
ties [29] by constructing the identity that peers have in the overlay
from their public key. This obliviates the need for a certificate to
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associate the identity that a peer has with a specific public key.
The certificate can be issued by a Certificate Authority (CA) or the
peer itself (i.e. self-signed certificates) as done in [40] and in [30]—
that embeds in the initial handshake a signed identity payload to
authenticate the static public key of the Noise_XX [22] protocol.
Self-certifying identities have been used in the past in P2P architec-
tures [7, 33] to prevent eclipse and sybil attacks. THEMIS focuses on
different problems—confidentiality, message integrity, and message
authentication/linkability—complementing these works rather than
competing against them. In SECIO [9], an earlier secure transport
protocol for IPFS and libp2p [3], peers use self-certifying identities
without relying on certificates. THEMIS provides stronger security
guarantees than SECIO, e.g., allowing key confirmation [17] and
resisting against identity-misbinding attacks [35].

3 THEMIS ARCHITECTURE

This section elaborates on THEMIS’s design and gives a high-level
description of its architecture.

3.1 Design Goals

THEMIS is a secure P2P communication scheme, designed to suit
the implementation of a large-scale, multi-cloud, and open service
mesh, by achieving:

Security: The multi-tenant nature of a service mesh demands
fine-grained security guarantees. The security mechanism in place
must allow for confidentiality, i.e., that the data being transferred
among two parties remains hidden, so as services coexisting on
the same network cannot eavesdrop on others communication. To
realize an open service mesh in which different providers can take
part, the joining process must be relaxed from setup burdens such
as communicating with a central authority registry. However, eas-
ing the joining procedure allows both malicious and honest nodes
to coexist on the same network. For this reason, the service mesh
must provide strong accountability for the exchanged messages so
as attribution of malicious behavior to be performed. To achieve
accountability, both authentication, i.e., the parties exchanging in-
formation are who they claim to be and integrity, i.e., the data being
transferred has not been forged or tampered with, must be guaran-
teed. These can be the basic underneath blocks for other security
primitives to be built on top (e.g., authorization).

Extensibility: Each service in a serverless application is created
and killed independently, based on the usage demand. A service
mesh needs to inherently provide scalability to serve the high repli-
cation of services. To avoid vendors lock-in issues and privacy
concerns, service meshes must be open, i.e., allowing instances to
be added and removed flexibly and quickly, and be hosted on both
commercial clouds and client in-house premises.

Service Discovery: Service instances must be able to discover
each other based on the business logic they implement. Instances
can implement different parts of the workflow of the same applica-
tion or can provide observability functionalities to the serverless
infrastructure by collecting metrics of the internal state of the sys-
tem. Deploying the discovery mechanism in a centralized way limits
the resilience of the serverless infrastructure against a region out-
age and restricts the nature of serverless applications (e.g., disaster
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Figure 1: THEMIS sits on top of the transport layer, organiz-
ing peers on a ring topology.

management). A decentralized service discovering mechanism must
allow inherently load balancing among the available instances that
implement the same service, fault tolerance by allowing instances
to redirect their request to a service instance with a healthy state,
and canary release for testing new versions of services.

3.2 Overview

THEMIS s design features a two-layer protocol architecture. The first,
lower layer described in Section 5, forms a core communication pro-
tocol pair that offers confidentiality, integrity, and authentication
without depending on a centralized point of authority. This layer
is comprised of two protocols: an authenticated key agreement
protocol for setting up a secure communication channel between
two nodes, and a protocol for direct communication between the
two authenticated nodes. The key agreement protocol is somewhat
comparable to the mTLS handshake protocol; the communication
protocol leverages symmetric cryptographic primitives to ensure
secure communication. Combined, the two protocols provide spe-
cific security guarantees to the communication channel established
between two nodes, which we prove in Section 5.2. They effec-
tively bind a symmetric key to a self-certifying identity so that any
message sent over the secure channel that the key enables can be
cryptography bound to an identity on the network.

The second, upper layer described in Section 6, builds on the
previous protocol pair to provide a series of actions related to iden-
tifier management. Examples of actions include join, store, and
find allow nodes to associate and manage the mapping between
identifiers—both ones corresponding to nodes and ones correspond-
ing to objects. This layer leverages the guarantees provided by the
lower layer to enhance security properties on nodes’ P2P communi-
cation underpinning a fully decentralized serverless infrastructure;
we analyze these properties in Section 6.2. This layer also incor-
porates several tunable parameters that depend on deployment
specifics. For example, a redundancy factor allows several copies
of a single identifier-to-node mapping; a freshness factor allows

the network to self-calibrate mapping staleness. We present how
these parameters can be used to provide a complete service mesh
architecture in Section 7.

4 SYSTEM & ADVERSARY MODEL

In this section, we provide the system and adversary model of
TreEMis. While THEMIs design was motivated by the service mesh
application, it is equally applicable to any decentralized application.

4.1 System Model

Our system consists of a set of nodes that interact to exchange
application-specific data. Each node can represent a machine or a
service that needs to interact, e.g., to build a serverless application.
Each node has an identifier that uniquely identifies them in the
system, and they can each store (and search for) data-objects that
represent a specific capability or piece of data that they wish to
make public to other members of the network. We assume that
nodes know the name of the data they are looking for. THEMIS is
agnostic to how data is named. Nodes may be physically located
(and controlled by) different operators, however any node can com-
municate with any other node.

TuewMs follows a layered architecture depicted in Figure 1, which
consists of a lower and an upper layer described in Sections 5
and 6, respectively. In THEMIS nodes can be grouped into different
networks distinguished by a network identifier. To join a network,
nodes need to communicate with a member of that network in
order to bootstrap communication. Each node generates and stores
a cryptographic key-pair which represents the identity of that node
within Taemis. This is needed to allow nodes to be authenticated,
and to link messages coming from the same node. We assume that
each node has sufficient storage space to dedicate to keeping state
for the overlay network.

4.2 Adversary Model

THEMIS considers a Dolev-Yao attacker who fully controls the com-
munication channel but he does not have physical access to the
machines, nor he can break any of the security properties of the
underlying cryptographic schemes (i.e., hashing, signature, mac)
used by the protocols. His goals are to break the confidentiality,
the integrity and the authentication of the messages that services
exchanged over THEMIs. Like other transport layer architectures
(e.g., mTLS), TuEMIS does not address attacks that aim to disrupt
the communication between the nodes (e.g., denial of service (DoS),
jamming). THEMIS allows machines to control multiple identities
on the overlay; this is a design choice to allow applications to use
services that are hosted by the same physical machine. THEMIS
does not specify a specific authorization mechanism; its goal is to
establish the service identities and enable them to establish a secure
channel for future communication. Its strong authentication, in-
tegrity, and confidentiality guarantees allow programmers to build
additional security properties (e.g., access control policies) on top
based on each application’s needs. Every service is rendered ac-
countable for its activity. In such a way, malicious or faulty services
can be identified and removed.
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5 THEMIS’S LOW-LEVEL ARCHITECTURE

In this section we initially describe the protocols that constitute
THEMIS’s low layer and we further analyze the security guarantees
they provide.

5.1 Low-Level Protocols

All messages between nodes in the network are sent over secure
channels established by our two custom protocols described in this
section. The first protocol provides authenticated key agreement
between any two network identities without relying on a central-
ized PKI The second protocol uses the established symmetric key
to provide message integrity, confidentiality, and authentication.

5.1.1 Authenticated Key Agreement. Authentication in this context
means that all messages can be attributed to exactly one identity.
The identity of a node is the hash of its public key and the name of
the network. That means that Alice can freely pick a public/private
key-pair (PK4,SK4) but the hash of the public key determines
Alice’s identity on the network net; 4, i.e., Alice = h(PK 4, net;g).
The protocol is shown in Figure 2. Alice picks a Diffie-Hellman
exponent a and a fresh nonce N4. She sends g% and N4 to Bob along
with PK4 and net;4. Everything, including Bob’s identifier B, is
signed with SK 4. When receiving a new message, Bob first verifies
that the signature is valid. He then inspects the identifier B that is
signed by Alice to check that he was the intended recipient. Bob
then picks his own Diffie-Hellman exponent b and sends gb back
to Alice along with his own public key, signed by the corresponding
private key. Bob includes N4 from the first message to allow Alice
to confirm freshness, and Alice’s identifier A to allow her to verify
that the message was meant for her. Bob then computes the key
Kap. When Alice receives message 2 she verifies that the hash of
the public key PKpg corresponds to the identity she was intending to
communicate with. If that is the case she checks that the signature
is valid and computes the new shared symmetric key Kap = (g%).
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Figure 3: Secure Communication Protocol. Alice and Bob com-
municate securely using a symmetric key established with
the Authenticated Key Agreement Protocol.

To prove to Bob that she knows the key, Alice sends him a MAC of
N4 created with Ky p.

If the protocol terminates without errors, it guarantees that
Alice and Bob share the same secret key. The resulting secret
key will be used in subsequent communication between the devices,
enabling them to authenticate each other. Both Alice and Bob store
K ap together with the identifier of the other party. Hence, the
number of keys that each node has to store is proportional to the
number of identifiers with which it chooses to communicate.

5.1.2  Secure Communication. The Secure Communication Proto-
col is used for all communication between nodes in the network
(except for key establishment). Specifically, all the procedures used
to maintain the P2P network (i.e., join, update, leave), as well
as the messages exchanged to execute a find or store operation,
use this protocol to provide confidentiality, integrity and message
authentication.

The protocol is shown in Figure 3. Alice, who wants to send the
command cmd to Bob, first increments the sequence number Sg
she maintains for her communication with Bob. She then encrypts
using the symmetric key she shares with Bob the command along
with Bob’s identity and the sequence number. In her message, she
also includes her identity A to allow Bob to retrieve the correct sym-
metric key and a MAC of everything. When receiving the message
Bob will verify the MAC using the already established key, and if the
MAC is valid he decrypts the message. Bob ensures that the identity
in the encrypted message is his, and that the sequence number Sg is
higher than the previous sequence number he received from Alice.
If so, he can process the command. When a response resp is ready,
Bob encrypts it with K4p together with Sg, he calculates the MAC
of the encrypted message and send them back to Alice. When Alice
receives message 2, she verifies that the MAC is valid and that the
sequence number corresponds to the one she sent in message 1.

If the protocol terminates without errors, it guarantees confi-
dentiality and integrity of the command and response.



5.2 Security Analysis

In this section we prove the security guarantees provided by our
protocols presented in the previous section (Sec. 5.1). For our anal-
ysis we assume an attacker under the threat model as described in
Section 4.2.

5.2.1 Authenticated Key Agreement.

Guarantee 1. If the Authenticated Key Agreement Protocol ter-
minates without errors and the decisional Diffie-Hellman (DDH)
assumption holds in the underlying group, the key K4p is known
only to Alice and Bob.

Proof. The only terms in the Authenticated Key Agreement pro-
tocol that are related to the key are the terms q, b, g%, gb . MACk, ,
and of course the key itself. Of these a and b are never visible to the
adversary as they are picked fresh during the protocol, and remain
internal to Alice and Bob, respectively. By the assumption that all
the underlying cryptographic primitives are secure the adversary
cannot obtain the key from the MAC. That leaves g% and g. If the
adversary has a method of getting K4p from these values then he
can use that method to break the Diffie-Hellman assumption, which
is a contradiction. O

Guarantee 2. If the Authenticated Key Agreement Protocol ter-
minates without errors both Alice and Bob will be in possession of
the same key.

Proof. We prove this for Alice and Bob individually, starting with
Alice. If the protocol completes successfully, Alice knows that she
shares K 4p with Bob. For an adversary, Eve, to break this guarantee
and convince Alice to assign another key K4r to her communi-
cation with Bob, Eve would have to successfully send message 2,
as this is the only way for Alice to obtain Bob’s Diffie-Hellman
contribution. Eve has two options to send message 2: she can either
craft the message or replay a previous captured message.

In order to craft message 2 the adversary has to find another key
pair where the public key obeys the following B = h(PKE, net; ;).
This means that Eve has to break the second preimage resistance
property of the underlying cryptographic hash function, which
again contradicts the adversary model. Without the ability to change
the keys for Bob’s signature, the adversary has to either forge Bob’s
signature or obtain his private key. Both again contradict the ad-
versary model. That only leaves the option to replay a previous
message. For replay to work, Eve has to make sure that the content
of message 2 expected by Alice, corresponds to one of the messages
available to Eve. Because the nonce Ny selected by Alice and Al-
ice’s identifier are both part of the signature in message 2, it means
that Eve cannot reuse a message from a previous session or one
that Bob sent to another node, to attack Alice. Eve would have
to force Alice to chose a nonce that corresponds to one of Eve’s
captured messages; however, according to our threat model, Eve
cannot influence Alice’s choice of N4.

We now prove the same for Bob. By the same argument as above
the adversary cannot forge Alice’s signature on message 1. However
replay is a different story. Bob does not have a way to readily check if
message 1 is a fresh message from Alice or indeed a replay from Eve,
so Eve can initiate a protocol run. However, in order to successfully
fool Bob and make him register a different symmetric key for Alice,

Eve has to confirm the new key in message 3. By Guarantee 1, Eve
does not know the symmetric key even if she sent the first message.
That means that she has to produce a valid MAC of N4 without
knowing the key. For a secure MAC scheme this is not possible,
and guessing either the key or the mac-value itself is only possible
with negligible probability. O

5.2.2  Secure Communication Protocol.

Guarantee 3. As long as the symmetric key K4p remains known
only to Alice and Bob, message confidentiality and integrity is
preserved for any command and response sent by Alice and Bob
respectively.

Proof. Both the command and response are solely sent encrypted
with K4 . The only way to break confidentiality of the command or
response is to break the confidentiality of the encryption function.
This contradicts the threat model which states that all underlying
primitives are secure. In order to violate message integrity the
adversary would have to recreate the MAC of the message without
knowing the MAC-key. This again contradicts the threat model
which states that all underlying primitives are secure. O

Guarantee 4. Any command received by Bob can be attributed to
Alice and any response Alice receives can be attributed to Bob. In
other words, message authentication is guaranteed.

Proof. This guarantee has to be shown for Alice and Bob individu-
ally. To break the guarantee for Alice the adversary would have to
manipulate message 2. By Guarantee 3 message 2 cannot be crafted,
so that only leaves replay. To successfully convince Alice that a
false response came from Bob, the adversary has to replay a valid
message containing the same sequence number that Alice used at
the start of the protocol. The sequence number is incremented be-
fore each new transmission by Alice so two packets from different
sessions will never use the same number. The only message that
uses the same sequence number is the one just sent by Alice, but
the encryption contains the intended receiver so it cannot be used
to replay (reflect) message 2. The only message the adversary can
replay is the true message sent by Bob which is not an attack.

To break the guarantee for Bob the adversary must manipulate
message 1. By Guarantee 3 message 1 cannot be crafted, so that
only leaves replay. To succeed the adversary must replay a message
containing a sequence number that is bigger than the biggest one
Bob has yet received. That means the adversary can only drop
messages but never deliver them out of order. In fact the adversary
cannot use any old messages that was sent prior to the last message
received by Bob. O

6 THEMIS’S HIGH-LEVEL ARCHITECTURE

In Section 5.1 we presented the two protocols that construct THEMIS
and in Section 5.2 we proved the security properties they provide. In
this section, we elaborate on how TaEMIs builds a secure structured
P2P platform.

6.1 High-Level Protocols

To support a decentralized identity management, THEMIS organizes
nodes on a ring topology that follows a clockwise order and defines
five key operations, find, store, join, update and leave. From



Table 1: THEMIs’s High-Level Messages. The sender and re-
ceiver assign cmd and rsp in the Secure Communication Pro-
tocol according to the operation they want to execute.

Operation Sender (cmd) Receiver (resp)
Find (find, identifier) value or id

Store (store, obj) ack

Join (join, net;q) id

Update update id or (id, ObjTable)
Leave (Leave, ObjTable, id) ack

these five operations, find and store support the identifier-to-
object mapping whereas join, update and leave support mainte-
nance procedures for P2P organization. Every peer initially executes
THEMIS’s Authentication Key Agreement protocol depicted in Fig 2
with each other node it wants to communicate. This handshake
allows nodes to establish a secure communication channel based
on a secret symmetric key. To execute the P2P operations, nodes
send messages using THEMIS’s Secure Communication protocol de-
picted in Fig 3. The sender and the receiver assign the cmd and rsp
variables according to the respective P2P operation as illustrated in
Table 1. In the following paragraphs we describe the P2P operations.

Find: This operation allows nodes to reach specific identifiers,
i.e., addresses on the ring topology. The identifier that is specified
each time by the initiator can refer to a node (node;y) or to an
application-specific data (object;y), which is generated by applying
a hash function h(m) on the data descriptor. When nodes receive a
find request, will try to resolve it by examining if this identifier is
included in their routing table (RT;; - the table where nodes store
pointers to other nodes around the ring) or in their object table
(OT;g4 - the table where nodes store mappings between node;y
and object;; for the objects they are responsible for). The find
operation for a node;; terminates to a node that has this node; 4 in
its RT;y4, returning the associated communication address of the
specified node; ;. In the case of an object;4, find terminates to the
responsible for this object node, who will return the associated
values {node;4}. In case the receiver of the request does not have
this identifier neither in its RT; 4 or its OT; 4, it will return the node; 4
(and its communication address) from its routing table that is closer
to the sought-after identifier. To allow the initiator to monitor how
her request is progressively resolving, we adopt an iterative routing
where all the traffic is handled by the requesting node; the responder
will return the closest node to the initiator, who will then initiate a
new operation with this new node.

Store: This operation provides the possibility for each node to
associate its node;4 with a specific object; ;. The node who wants to
be associated initially starts a find operation for this object;y; this
will provide the possibility to the initiator to retrieve the responsible
node for this object. As soon as the node has this information, it
will contact the responsible node specifying the object with which
it wants to be associated. The responder will then amend the list
for this object with the node;4 of the initiator. THEMIS achieves
fault tolerance by adopting a replication mechanism that maps
application-specific data to multiple objects. In particular, every
name that is defined by the representation mechanism in use is

hashed together with a counter number object;; = h(name;4||r)
where r € [0, k]; thus, for a single application-specific data nodes
create and store k + 1 objects. The value k is a network constant
agreed among the participant nodes, which determines an upper
bound of the redundant objects that will be stored on the network.
However, nodes are free to decide the value k they will use for every
application-specific data. The responsible nodes drop the values
they store in between specific time intervals t. For this reason, peers
contact the responsible nodes periodically, to make sure that their
associations are maintained registered on the network.

Join: To learn the first node who succeeds them in the network,
nodes execute the join operation with a bootstrapping node, a node
which they know and which is already a member of this network.
The bootstrapping node will initiate a find operation specifying
the newcomer’s node; 4 as the sought-after identifier. Based on the
routing procedure explained above, the find operation will return
at the end the first successor of this identifier in the network. The
responder will return to the initiator its first successor who upon
receiving its response will save it as its first successor in its RT;4.

Update: To maintain a consistent mapping between nodes and
objects, nodes periodically execute the update operation in specific
time intervals. During this operation every node will contact its
first successor to check if it is actually the node who succeeds it in
this network. The responder, upon receiving the initiator’s request
will retrieve his predecessor and check if his predecessor is also a
predecessor of the initiator. If this is the case, the responder saves
the initiator as his predecessor and checks to see if the node;; of the
initiator is closer than his identifier to any of the objects for which
he is responsible. If there are such objects, he will pass them with his
response to the initiator who will now become the responsible for
these objects node. If the predecessor of the responder is between
the responder and the initiator identifiers, the responder will send
back to the initiator his predecessor node;; as this is her correct
first successor who she needs to communicate.

Leave: In THEMIS nodes maintain in their OT;,; the associated
values for all the objects for which they are responsible. The Leave
operation allows for node departures from a network to occur with-
out any loss of associations. The initiator who wants to leave the
network communicates her first successor to pass the information
related to the objects for which she is responsible together with the
node; g of her predecessor. The responder will store and become
now responsible for these objects. He will also update his predeces-
sor so as to point to the initiator’s predecessor. In THEMIS nodes are
free to leave and join at any time. Nodes can abandon any network
in which they participate without notifying other nodes, in this
case any node who will try to contact them will receive a timeout
and the node will be presumed dead, and all the associated values
for the objects for which they were responsible will be lost. The rest
nodes of the network can retrieve the lost associations by initiating
a find request for one of the k remaining objects.

6.2 P2P Attacks

In this section we elaborate on the security properties of the P2P
operations against common attacks of DHT networks [38].



Sybil attack: The self-certifying identifiers that THEMIS provides
allow every device to participate in the network without the need
for any initial communication. They also allow devices to create as
many identities as they want, known as a Sybil attack, which can
be problematic in certain applications. THEMIS does not consider
this behavior an attack since the properties of message linkability
and authentication still apply for every identity. Some applica-
tions might want to use different identities to provide different
services—even though these are hosted by the same device. Our
solution makes that possible. For applications where Sybil attacks
are problematic, THEMIS provides the application layer with enough
information, i.e., the communication address of each identity, to
implement checks for which identities are allowed to run on which
devices.

Eclipse (Routing Table Poisoning) attacks: In an Eclipse at-
tack an attacker tries to isolate a node from honest peers by placing
malicious nodes as its neighbors. It is possible for an attacker to
insert incorrect information into the routing table of a device if that
device happens to contact an adversary. However, because of the
circular structure of the addresses, it is always possible to check if
a find request is making progress towards its goal. If progress is
not being made the device can make sure not to contact the same
identity again. As long as there are still honest nodes present in the
routing table, the device will eventually ask one of them and get
useful information. A coordinated attack against a specific device
could result in DoS, but that falls outside of our threat model (Sec.
4.2).

Storage attacks: THEMIS enables nodes to store an association
between an application-specific data (e.g., a filename, a capability, a
service, etc.) object and its identity in the network. Specifically the
association is kept by k + 1 different nodes, and some of those nodes
might decide to drop the association, or make up an association
that does not exist (ghost objects). If that happens other devices
that search for an object will either not find it or find a ghost object
that matches their search. This is a nuisance but will never result in
a violation of any of our security guarantees. Any object is stored
in the network k + 1 times so if an association is drooped by a few
nodes the other objects will still be available. Furthermore, it is
the responsibility of any node that stores data in the network to
regularly check and re-store the data if objects are missing, so such
an attack has limited effects. If a ghost object is returned from a
find operation, it will result in a connection attempt to the identity
pointed to by the ghost object. That identity can either signal that
the association is unknown, in which case the attack resulted in a
single unnecessary connection and nothing else. If the ghost object
points to an attacker that then provides a service, that is not an
attack on THEMIs. This is equivalent to an attacker announcing
a service under a specific name and then providing that service.
The service itself might be malicious, but that is a problem for the
application layer as THEMIS does not know or care what data is
transferred, only that the identity of the communicating partners
cannot be falsified.

7 THEMIS SERVICE MESH

We now elaborate on how THEMISs can be used to assist program-
mers tasked with the development of serverless applications by

taking care of all the low-level details of a secure and scalable
communication across serverless nodes. Let’s assume an exam-
ple application, AppAuth, which consists of two microservices: an
ingress point, i.e., handler and a processing back-end, i.e., check.
When the handler microservice receives a web request carrying a
username and password, uses check to fetch a dictionary of known
users’ credentials, validates the received pair, and then handles it
appropriately by sending a response message and associated code.

The programmer starts by creating a mesh with a specific net-
work identifier to group the microservices that need to communi-
cate, specifying a bootstrapping node. In our example, microser-
vices joins a service mesh with identifier twiitr and bootstrap-
ping point the route /main. Microservices are placed on a ring
topology based on each microservice’s node identifier, following
a key-based routing scheme. THEMIs allows service discovery by
creating mappings between the node identifiers and the microser-
vices. A node first creates a cryptographic public-private key pair
and generates its identifier B = h(PKp, twiitr). It then calculates
an object identifier for the microservice it implements, by hashing
the service’s name interface, e.g., Objectg = h(check). A mapping
is created by initiating the store operation that informs the re-
sponsible node for Objectg to amend the object’s value with its
node identifier B. Nodes that request check, for example node A,
retrieve B by initiating a find operation for Objectg. In fact, the
find operation returns to the requester a list of node identifiers
that have executed the store operation specifying Objectp. There
is one node responsible for every object identifier. THEMIS adopts a
redundancy mechanism having one microservice to be associated
with multiple object identifiers. In our example, assuming a redun-
dancy factor k = 2, the check microservice will be associated to
three sibling object identifiers, Objectg, Objectg; = h(check, 1) and
Objectpy = h(check, 2), for which node B initiates three separate
store operations. Node A can retrieve B by initiating a find opera-
tion for any of the three object identifiers. The returned list and the
redundancy factor provide fault tolerance; in case of failing nodes
the requester can select another node from the list or initiate a find
operation for a sibling object, until a node with a healthy state is
found. Nodes select randomly over the returned list the node to
communicate; thus, the load is evenly distributed between the repli-
cated nodes. Further to the dynamic load balancing property that
this technique provides, it also enables canary releases. As nodes
are evenly selected, programmers can deploy a new version of a
microservice progressively on different machines based on their
nodes identifiers.

In a centralized architecture configuration functionalities (e.g.,
authentication, discovery) are implemented in whole or in part by
control plane registries which data plane proxies need to commu-
nicate to operate. THEMIS couples the data and the control plane
implementing a fully decentralized application. In our example
the responsible node for Objectp, e.g., node C, fulfils the task of a
central service discovery registry redirecting A to B. THEMIS lever-
ages the DHT to route messages among peers; thus, it inherits its
scalability property to accommodate the high rate of replication
services. Abolishing managerial registries provides openness that fa-
cilitates migration off commodity serverless platforms, particularly
beneficial to enable access and processing of data hosted on edge
devices. Decreasing programmers lock-in can allow them to invent



Table 2: End-to-end performance evaluation. For each measurement we present three values: The performance of Themis T, the
performance of a vanilla implementation V, and the increase in percent %A.

Startup Time [s]

Exec. Time [s]

Throughput [req/s]

Latency [s]

Duration [s]

% T/V %\ T/V %A T/V %\ T/V %\ T/V
DecisionTree 19.23 031/0.26 0.20 176.25/175.90 0.00 0.68/0.68 0.91 57.59/57.07 0.00 1.45/1.45
K-Means Clustering 4586 0.31/0.21 0.23 24570/245.14 0.00 0.49/0.49 0.23  92.19/91.98  0.00 2.02/2.02
Knn 356.52 1.05/0.23 048 731.69/728.20 0.00 0.16/0.16 0.58 336.93/334.98 0.33 6.03/6.01
LinearRegression 4348 0.33/0.23 7.97 169.10/156.62 7.79 0.71/0.77 12.99  53.48/4733 7.75 1.39/1.29
NLP 12.50 0.45/0.40 0.95 129.19/127.98 1.06 0.93/0.94 394 3430/33.00 0.95 1.06/1.05
NaiveBayes 4286 0.30/0.21 0.39 124.62/124.14 1.03 0.96/0.97 2.80  31.89/31.02 0.00 1.02/1.02
RandomForest 30.00 0.26/0.20 0.22 120.40/120.13 0.00 1.00/1.00 2.69  29.74/28.96  0.00 0.99/0.99
Unweighted Shortest-Path 0.00 0.04/0.04 0.13 165.46/165.24 0.00 0.73/0.73 0.37  52.23/52.04 0.00 1.36/1.36

their own configuration services, e.g., observability microservices
exposed through special service name interfaces, which application
microservices can discover following the same discovery mecha-
nism explained above. The low-level protocols of THEMIS render
nodes accountable for the messages they exchange. Using every
message as a node behaviour trace, faulty or malicious activity can
be identified and resolved.

8 IMPLEMENTATION

We have implemented a prototype of THEMISs in about 3.3K lines of
JavaScript available on npm via npm -i @xxx/themis. JavaScript
was chosen due to its ubiquity in serverless environments. THEMIS
sits on top of the transport layer; our implementation is designed
to operate atop a series of communication protocols, e.g., TCP, UDP
and HTTP, passing an initial communication object to the start
method. The THEMIS implementation avoids platform and runtime-
specific configuration, and thus can execute atop any JavaScript
runtime environment. A thin command-line wrapper allows the
construction of virtual nodes for testing and experimentation, as
Unix processes running Node.js [37]. Node.js is a JavaScript runtime
that bundles (i) Google’s V8, a high-performance JIT compiler, (ii)
libUV, asynchronous cross-platform OS wrappers, and (iii) a small
set of standard libraries (e.g., crypto).

TrEMIS uses the built-in EcmaScript object type to maintain an
in-memory mapping between strings to identifiers (along with their
timeouts and debug metadata). In cases where the host environment
additionally supports persistent storage, THEMIS stores persistent
data using non-blocking I/O: data are always cached and served
from memory, and persistent storage is used to facilitate service
restarts. In terms of cryptographic support, our THEMIS prototype
offloads operations to NaCl [10]. NaCl is a high-speed constant-
time cryptographic library, which we compiled to JavaScript using
Emscripten (adding another 2K LoC). NaCl offers high performance
cryptographic primitives, avoids calls to dynamic memory alloca-
tion functions such as malloc and sbrk, and uses small amounts of
stack space. Upon bootup, a service generates a new secure public-
private key pair. For the communication between two services, NaCl
provides primitives that combine a receiver’s public key with the
sender’s private key to derive a common symmetrical key. This key
is then used to symmetrically encrypt and authenticate plaintext
messages (in THEMIS, serialized buffers).

THEMIS is accessible as a software module (library), implantable
into (often, pre-existing) programs using a conventional import
statement. Upon import, the THEMIS library (1) checks for the ex-
istence of a public-private key pair, and if non-existent generates
a fresh one; (2) loads and binds a listener of the chosen transport
protocol on a pre-specified port (consecutive ports for multiple
nodes running on a single physical host); (3) returns the Themis
object, which is used to access Themis’s interfaces.

9 EVALUATION

In this section, we investigate the following questions: (Q1) What
is the performance and scalability characteristics of serverless ap-
plications built on top of THEMIS, and how do they compare to
THEMISs-less versions (Sec. 9.1)? (Q2) How do different THEMIS op-
erations perform in the limit, and how do they compare with their
insecure counterparts (Sec. 9.2)? To answer these questions, we
perform experiments across two distinct environments. For Q1, we
use as benchmarks eight serverless applications, outlined in Table 2
(alphabetical order), whereas for Q2, we use synthetic microbench-
marks that stress individual THEMIS operations.

Result Highlights: Across all eight serverless applications, the
security benefits of THEMIS come at an imperceptible throughput
overhead (1.24%, on average) and a small latency overhead (< 4% in
almost all the benchmarks), more pronounced in the context of low-
latency serverless applications. The application startup overhead
introduced by THEMIS is 356.52% in the worst case, but remains
under 1s and is an one-off cost amortized across the long execution
times typical for serverless applications.

Experimental Setup: On the hardware side, for Q1 we use an
8-node distributed cluster on Microsoft’s Azure Cloud. It amounts
to eight DC1s v.2 machines equipped with Intel Xeon E-2288G
CPUs and 4GB of memory, and running Ubuntu 18.04 LTS with
kernel version 5.4.0-147. For Q2, we use a large-scale multiprocessor
equipped with an 128-core Intel Xeon E7-8830 processor at 2.13GHz,
512GB of memory; it is running Debian 4.19.160-2 with kernel
version 4.19.0-13. This environment is used to launch hundreds
of micro-services, avoiding the non-determinism introduced by
network operation and allowing us to zoom into THEMIs-inherrent
overheads. On the software side, we use Node.js v8.9.4, bundled with
V8 v6.1.534.50, LibUV v1.15.0, and npm version v6.4.1. We launch
multiple (virtual) Themis nodes as operating-system processes on



each physical node. Each virtual Themis node has its own copy
of the runtime environment, listens on a separate (ip, port) pair,
and accepts events in its own event queue. Except when noted
otherwise, we report averages over 1K runs.

9.1 Q1: End-to-End Performance

To understand the performance and scalability overheads intro-
duced by THEMIS, we compare the THEMIS-augmented benchmark
applications against their non-secure counterparts—i.e., ones that
do not incorporate THEMIS’ security components. Table 2 presents
the results of THEMIS’s end-to-end performance evaluation across
five metrics: startup time, execution time, throughput, latency and
duration. Each measurement cell contains three numbers—a tuple
of the form (A, V, T) where A is the percent difference between
the vanilla and THEMIS-augmented versions of the serverless ap-
plication, and V and T is the absolute measurement corresponding
to the vanilla and the secure, THEMIs-augmented implementation,
respectively.

Regarding startup time, i.e., , the duration cost of reaching a
stable state—registering all relevant services and creating encrypted
communication channels between them—THEMIS introduces an
average overhead 0.16s. The total execution time, i.e., the end-to-
end time to run the full load, shows minimal differences (under 1% in
most of the cases). Similarly, the request throughput, i.e., the number
of requests a serverless application handles per second, shows
identical performance for the majority of the evaluated applications.
THEMIS has a higher impact on the application Latency, the average
time to execute a single request. THEMIS introduces a maximum
of 13% latency overhead to each request, whereas the execution
overhead of each request ranges between 0-7.75%.

9.2 Q2:Individual Operator Performance

To understand THEMIS’s performance of find and store opera-
tions across different scales, we perform two experiments where
we insert and retrieve 1M 16-byte data objects at a constant rate
of 50K objects per second. In the first experiment, the objects are
configured to resolve to the node receiving the request to store or
retrieve the object—i.e., the node does not need to forward the re-
quest to other nodes. By resolving the request locally, i.e., excluding
multiple hops of serialization, inter-process communication, and
context switching, the throughput and latency results show the best-
possible performance achieved by our runtime implementation—
i.e., THEMIS’s practical limits due to the implementation’s runtime
environment. The resulting throughput averages 10223 and 9332
operations per second for find and store, respectively; the re-
sulting latency averages 331ms and 338ms for find and store,
respectively.

In the second experiment, we focus on the throughput as a func-
tion of the number of nodes. Object identifiers are now randomly
generated, and thus are expected to hit all the nodes in the net-
work with uniform probability. Fig. 4 shows the throughput and
the latency of the find operation as a function of the number of
nodes. The overhead of adding security ranges between 2.1-31.6%
and depends critically on the percentage of nodes that have already
performed the key agreement protocol. For low numbers of nodes
(left side of plots), the majority of nodes have performed the key
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Figure 4: Operation Find. The plots show the throughput (bottom)
and the latency (top) of the find operation, as a function of the
number of nodes, on a constant operation workload of 50K peer-to-
peer operations per second.

agreement protocol, whereas for high numbers of nodes (right side
of plots), the majority of nodes have not.

To understand the performance of the join operation, we have
500 nodes contact ten bootstrap nodes in round-robin fashion. Start-
ing these 500 nodes sequentially takes 362.466s (an average of
720.5ms/node). If, however, we spawn 500 nodes in parallel, we get
a total of 15.403s (an average of 30ms/node). A part of this overhead
includes operating system overheads such as V8 process creation,
which averages about 320ms per node. Other overheads arise from
the identify (public-private key pair) creation and the authenticated
key agreement protocol, averaging about 52ms.

To understand the overhead of leave, we launch a series of
nodes with a startup configuration that runs a join followed by
a leave command when the join command completes. We run
this sequentially in a loop where we spawn a node only after the
previous node has shutdown; on average, “blinking” a node (i.e.,
have a node leave right after joining) takes a total of 780ms. Much
of this time is spent in system-level overheads, most of which is
from (i) importing multiple library source files and (ii) binding to
various network interfaces. The overhead of leave amounts to less
than 50ms.

10 CONCLUSION

This paper presents THEMIS, a framework for secure P2P commu-
nication that is general enough to be usable in a variety of sce-
narios that demand point-to-point interaction. In this paper we
have shown how THEMIS can serve as a platform for implement-
ing a secure service mesh communication network for use in data
centres and companies that need dynamic load balancing and ex-
tensibility. THEMIS consists of two layers. Its lower layer provides a
secure communication protocol, similar to mTLS in many ways but
with a strong emphasis on distributed identity management. We
provide a thorough security analysis that proves the claimed secu-
rity guarantees, i.e., confidentiality, message integrity, and message
authentication/linkability. We emphasize how any additional guar-
antees can be built on top, leveraging its core security properties.
Its upper layer consists of a set of actions that offer a fully func-
tional P2P network. We use THEMIS to implement a service mesh
communication network in order to perform a detailed evaluation.
Our open-source prototype achieves both throughput and latency
on par with other (insecure) P2P networks despite the fact that it
provides strong security guarantees.
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