
Practically Correct, Just-in-Time Shell Script Parallelization

Konstantinos Kallas
University of Pennsylvania

Tammam Mustafa
MIT CSAIL

Jan Bielak
XIV Staszic High School

Dimitris Karnikis
Aarno Labs

Thurston H.Y. Dang∗

MIT CSAIL
Michael Greenberg

Stevens Institute of Technology
Nikos Vasilakis

MIT CSAIL

Abstract
Recent shell-script parallelization systems enjoy mostly auto-
mated speedups by parallelizing scripts ahead-of-time. Unfor-
tunately, such static parallelization is hampered by dynamic
behavior pervasive in shell scripts—e.g., variable expansion
and command substitution—which often requires reasoning
about the current state of the shell and filesystem.

We present a just-in-time (JIT) shell-script compiler, PASH-
JIT, that intermixes evaluation and parallelization during a
script’s run-time execution. JIT parallelization collects run-
time information about the system’s state, but must not alter
the behavior of the original script and must maintain minimal
overhead. PASH-JIT addresses these challenges by (1) using
a dynamic interposition framework, guided by a static prepro-
cessing pass, (2) developing runtime support for transparently
pausing and resuming shell execution; and (3) operating as
a stateful server, communicating with the current shell by
passing messages—all without requiring modifications to the
system’s underlying shell interpreter.

When run on a wide variety of benchmarks, including the
POSIX shell test suite, PASH-JIT (1) does not break scripts,
even in cases that are likely to break shells in widespread use;
and (2) offers significant speedups, whenever parallelization
is possible. These results show that PASH-JIT can be used
as a drop-in replacement for any non-interactive shell use,
providing significant speedups without any risk of breakage.

1 Introduction

The UNIX shell is an environment for composing programs
from components written in a variety of programming lan-
guages. Coupled with UNIX’s toolbox philosophy [41], this
language agnosticism makes the shell a popular choice
for succinctly expressing tasks that involve data process-
ing, system orchestration, and other automation. Recent sys-
tems [52, 55, 63] accelerate such tasks by exploiting data

∗The author is now at Google but the work was done while he was at MIT.

parallelism: using ahead-of-time (AOT) analysis and trans-
formation, these systems parse, analyze, and transform shell
scripts into new scripts that execute in parallel.

Unfortunately, AOT parallelization quickly becomes in-
tractable due to the dynamic nature of the shell: dynamic
features such as variable expansion and command substitu-
tion, pervasive in shell scripts, generate and consume values at
run-time while depending on and interacting with the broader
environment—i.e., the filesystem, the environment variables,
and the shell interpreter itself. Additionally, modern shells
offer several different configurations and execution modes,
leading to complex behaviors described in hundreds of pages
of POSIX standardese [2]. The complexity of these interac-
tions and their side-effects lead existing parallelization tools
to an unavoidable trade-off between (1) being conservative,
aborting on scripts that use dynamic features, or (2) being
unsound, possibly breaking scripts during parallelization. Re-
cent systems [52, 55, 63] tend to be conservative—operating
only on fully expanded shell pipelines and having a hard time
even on simple uses of variables (see §2).

This paper presents PASH-JIT, a production-grade just-in-
time (JIT) shell-script compiler aimed at non-interactive paral-
lelization: PASH-JIT focuses on three practical (but conflict-
ing) goals: (G1) run-time-informed parallelization: PASH-JIT
leverages run-time information to parallelize script fragments
that depend on state that is statically indeterminable; (G2)
full behavioral equivalence: PASH-JIT is aware of the full set
of dynamic behaviors present in POSIX shells, producing re-
sults that are indistinguishable from the sequential execution
on the system’s shell interpreter; (G3) loose shell coupling:
PASH-JIT avoids modifications to the system’s underlying
shell interpreter, eschewing practical problems (e.g., main-
taining two Bash implementations). PASH-JIT behaves as a
drop-in shell shim enhancing any non-interactive shell use,
providing significant speedups without any risk of breakage.

PASH-JIT’s key insight is to parallelize scripts just-in-time:
by intermixing evaluation and parallelization during a script’s
execution, PASH-JIT collects and uses the latest possible
run-time information about the state of an expression’s vari-

1

ables, the shell, and the filesystem. PASH-JIT parallelizes
script fragments when it is safe to do so, resolving indetermi-
nacies in the broader environment on the fly. Unfortunately,
low-overhead run-time-informed parallelization (G1) is par-
ticularly challenging to implement in view of full behavioral
equivalence (G2) and loose shell coupling (G3). PASH-JIT
addresses this conundrum using: (1) a dynamic interposition
framework, guided by an instrumentation preprocessing pass;
(2) support for reentrance, transparently pausing and resuming
the execution of the underlying shell interpreter at run-time;
and (3) a stateful, long-lived compilation server that com-
municates with the current shell by exchanging messages. A
9K-LOC implementation and several run-time optimizations—
e.g., dynamic independence discovery, commutative-aware
parallelization—complete the picture.

We apply PASH-JIT to a variety of benchmarks, ranging
from scripts collected from the wild to the POSIX test suite.
PASH-JIT behaves identically to Bash 4.4.20(1) on 406 out
of 408 applicable POSIX tests; matching Bash is a signifi-
cant achievement even for a non-parallelizing shell—shells in
widespread use differ on much larger subsets of tests. PASH-
JIT offers speedups up to 33.7× over Bash on a 64-core
machine (improving the state of the art [63] by 2× on av-
erage), notably parallelizing scripts that prior work failed to
parallelize due to dynamic behaviors.

The paper begins by exemplifying dynamic shell features
and the application of PASH-JIT’s techniques (§2). Sec-
tions 3–6 describe PASH-JIT’s main contributions:

• A dynamic interposition framework for the shell: A just-in-
time analysis and optimization subsystem enables safe and
effective parallelization during the execution of a script,
dealing with the challenges of dynamic shell-script behav-
ior. A first pass determines where to insert calls to a par-
allelizing optimizer in a given input script (§3), which is
then invoked on-the-fly while the script is executing (§4).

• A stateful, parallelizing compilation server: PASH-JIT
queries a long-lived parallelization server at run-time to
compile script fragments. This model improves run-time
efficiency by avoiding startup costs on every JIT invocation,
and enables additional run-time optimizations for (1) exe-
cuting independent regions in parallel, and (2) pipelining
compilation and execution. The core of the server has been
modelled and formally verified using SPIN [29] (§5).

• Commutativity-aware optimization: Additional compila-
tion optimizations target commands that are commutative
with respect to their input, along with parallelizing transfor-
mations and run-time primitives that improve the run-time
performance of scripts that contain such commands (§6).

The paper then presents PASH-JIT’s evaluation (§7) and re-
lated work (§8), before concluding (§9). PASH-JIT is MIT-
licensed open-source software supported by the Linux Foun-
dation at https://github.com/binpash/.

2 Example & Overview

Below is a shell program that downloads a compressed archive
of text files (books from Project Gutenberg), extracts them in
a directory, and then performs an analysis to find the frequen-
cies of all words of a specific form.

IN=${IN:-$TOP/pg}
mkdir "$IN"
cd "$IN"
echo "Download will take some time, be patient..."
wget "$SOURCE/data/pg.tar.xz"
if [$? -ne 0]; then

echo "Download failed!"
exit 1

fi
cat pg.tar.xz | tar -xJ

cd "$TOP"
OUT=${OUT:-$TOP/output}
mkdir -p "$OUT"
for input in $(ls "$IN"); do

cat "$IN/$input" | tr -sc '[A-Z][a-z]' '[\012*]' |
grep '^....$' | sort | uniq -c > "$OUT/$input.out"

done

The program makes pervasive use of the shell’s dynamic fea-
tures. For example, it uses environment variables such as $TOP,
variable expansion like ${OUT:-$TOP/output} to assign de-
fault values, command substitution $(...) as part of the loop
condition, and state reflection on the file system by running
ls on $IN (itself resolved dynamically).

None of the values of these variables can be known ahead
of time just by analyzing the program’s source code. They
become known only at run-time, when the shell interpreter
reaches these points in the program’s execution. A sound
AOT compiler such as PASH-AOT [63] or POSH [52] would
fail to parallelize—foregoing all the performance benefits of
data-parallel execution spread across many files in $IN.

PASH-JIT instead takes a JIT approach that interjects par-
allelization opportunities during and throughout the script’s
execution (Fig. 1).

Dynamic interposition (§3): PASH-JIT first uses a prepro-
cessing step to instrument all potentially optimizable pro-
gram regions with calls to the JIT engine. PASH-JIT chooses
regions to maximize the potential benefits of parallelizing
them: intuitively, commands and pipelines can yield signifi-
cant benefits, whereas word expansion, control flow, and vari-
able assignments are operations that do not perform heavy
computation and can therefore be left as they are. PASH-JIT’s
preprocesor and compiler both make extensive use of pars-
ing/unparsing of shell source code, implemented as a new
parsing library. After PASH-JIT has inserted calls to the JIT
engine, it invokes the user’s shell interpreter to execute this
transformed script. During this execution, the JIT engine calls
the parallelizing compiler at run-time—right before the execu-
tion of each fragment, when the state of the shell and the file
system have already been resolved. The transformed program

2

https://github.com/binpash/

script PASH-JIT
Preprocessor (§3.2)

PASH-JIT
Parsing Library (§3.3)

instrumented
script

State (vars, set, files)

...

source jit.sh

...

PASH-JIT
JIT Engine (§4)

PASH-JIT
Compilation Server (§5)

User Shell

Fig. 1: PASH-JIT overview. PASH-JIT instruments scripts with calls to the JIT engine, which passes program fragments to the compilation server at run-time.

maps original commands to regions—for example, region8
corresponds to the cd call and region10 corresponds to the
pipeline in the for loop.

source jit.sh "$region8" # cd $TOP
OUT=${OUT:-$TOP/output}
source jit.sh "$region9" # mkdir -p "$OUT"
for input in $(ls "$IN"); do
source jit.sh "$region10" # cat "$IN/$input" | ...

done

The command source jit.sh "$regionN" invokes the JIT
engine passing as argument the corresponding fragment. The
source built-in retains the same shell environment, reflecting
any effects directly into the current environment.

JIT engine (§4): Internally, the JIT engine first saves the
state of the shell at that point in the script’s execution to iso-
late it from compilation—protecting the shell from the JIT
engine and protecting the JIT engine from obscure shell con-
figurations. PASH-JIT then invokes the compiler to attempt to
parallelize the fragment. If the compiler succeeds, PASH-JIT
runs the resulting parallel fragment; if not, it runs the original,
unmodified region. In both cases, PASH-JIT will first restore
the state of the shell before executing the fragment. Whether
the compiler succeeds or not depends on the properties of
the fragment’s code—e.g., PASH-JIT will reject region8 due
to the side-effectful cd command, but will accept region10
compiling grep and sort into the parallel fragment below:

c_split /tmp/fifo8 /tmp/fifo9 /tmp/fifo10 &
c_wrap 'grep "^....$"' </tmp/fifo9 >/tmp/fifo11 &
c_wrap 'grep "^....$"' </tmp/fifo10 >/tmp/fifo12 &
c_strip </tmp/fifo11 >/tmp/fifo13 &
c_strip </tmp/fifo12 >/tmp/fifo14 &
sort </tmp/fifo13 >/tmp/fifo15 &
sort </tmp/fifo14 >/tmp/fifo16 &
eager.sh </tmp/fifo15 >/tmp/fifo17 &
eager.sh </tmp/fifo16 >/tmp/fifo18 &
sort -m /tmp/fifo17 /tmp/fifo18 >/tmp/fifo19 &

The resulting compiled fragment executes in a data-parallel
fashion: data is split by PASH-JIT primitives, then fed to
multiple instances of grep and sort runnning in parallel, and
finally merged at the end of the parallel execution.

Dependency untangling (§5): While the JIT engine oper-
ates as if invoked on every region, PASH-JIT is engineered
to spawn a long-running stateful compilation server just once,
feeding it compilation requests until the execution of the
script completes. This design has two benefits: (1) it reduces
run-time overhead by avoiding reinitializing the compiler for

each compilation request; and (2) it allows maintaining and
querying past compilation results when compiling a new frag-
ment. The latter allows PASH-JIT to untangle dependencies
across regions, finding and exploiting opportunities for cross-
region parallel execution. For example, the server’s first invo-
cation on region10 (the body of the loop) determines that all
prior successfully compiled regions have finished executing.
PASH-JIT can thus simply run the loop in the background and
continue with the second iteration in a task-parallel fashion,
without waiting for the first iteration to complete executing.
During the second invocation on region10, PASH-JIT will
use the dependency state to determine that while the previ-
ously compiled fragment is still running, the input and output
files of the two regions are completely independent and can
thus be executed in parallel: our loop is now pipelined! PASH-
JIT goes beyond intra-region data parallelism: the JIT enables
inter-region task parallelism by resolving dependencies and
confirming they are independent.

Commutativity analysis & compilation (§6): The first
goal when compiling fragments such as region10 is to iden-
tify command sequencies that are parallelizable using a divide-
and-conquer strategy. Due to the shell’s order-aware na-
ture [28], naive divide-and-conquer would need to (1) read
the entire input before splitting it, to determine the exact size
of each batch, leading to stalled pipeline parallelism; and (2)
wait until all of its predecessors have consumed their batch,
storing data after split on disk, to ensure that all parallel nodes
will not wait for their input.

While these overheads are unavoidable in the general case,
and are indeed incurred by prior systems [55, 63], they can
fortunately be alleviated for subsets of parallelizable com-
mands. Two such subsets include (1) stateless commands
such as grep -c '^....$' that operate in a line-oriented
fashion, meaning that data-parallel copies of these commands
can combine their partial output using a reordering operation,
and (2) commutative commands such as sort -u that produce
equivalent output regardless of the order of the input lines.
PASH-JIT leverages this insight to achieve more effective par-
allelization by splitting into streaming micro-batches (using
c_split) in a round-robin fashion—avoiding the overheads
of reading all the input before splitting and of unnecessary
storage to disk. It also wraps stateless commands to strip and
re-add the microbatch headers (using c_wrap) and removes
these headers completely before commutative commands (us-
ing c_strip).

3

Zooming back out: Fundamentally, PASH-JIT is neither
a shell nor requires modifications to a user’s shell. Rather,
it is an interposition shim located between a user and their
shell, deciding whether to optimize parts of the user script
on the fly, using information about the execution state of the
shell interpreter. PASH-JIT combines several techniques that
allow harnessing speedups not attainable by ahead-of-time
parallelization on both dataflow-only scripts and larger scripts
with dynamic components and complex control flow; all of
this, without modifying the behavior of the original script.

3 Interfacing With the Shell

PASH-JIT works by interposing on the shell, effectively
rewriting invocations to external commands. Challenges arise
due to the shell’s complex semantics and its intricate internal
state, both of which complicate side-effect-free interposition.
The shell uses a string-based, bi-modal semantics: commands
undergo expansion, a string rewriting phase where variables,
tildes, and globs are processed before the commands undergo
evaluation. Both modes have complex semantics heavily in-
volved with the shell’s state [24]; any rewriting must be care-
ful to leave the shell’s state unaltered.

3.1 Dynamic Interposition
To understand PASH-JIT’s interposition, we must first un-
derstand the simpler structure of ahead-of-time (AOT) paral-
lelization. While preserving a script’s original behavior, AOT
parallelization rewrites calls to external commands to exploit
parallelism. External commands consume substantially more
time and resources than shell language features (like expan-
sion or loops) during the execution of typical shell scripts.

AOT parallelization centers around the identification of
parallelizable regions—script fragments that may be safely
parallelized to yield performance gains. Semantically, par-
allelizable regions only contain a set of command invoca-
tions that satisfy the following conditions: (1) they have no
file dependencies (interference-free), i.e., all commands can
execute concurrently without affecting each other, (2) they
communicate with each other using explicit UNIX channels
(fifos/pipes); (3) they are pure, only affecting the environ-
ment by reading and writing to files, i.e., they do not modify
environment variables; and, (4) they are fully expanded. An
AOT compiler parses and transforms these regions to an in-
termediate representation such as directed-acyclic [52] or
dataflow [63] graphs, abstracted as functions that take a set
of input files and produce a set of output files [28]. It then ap-
plies transformations on these graphs to perform the original
computation in parallel.

PASH-JIT works similarly, but applies these steps at a
much finer granularity and in a dynamic, online fashion.
PASH-JIT’s dynamic interposition mechanism pauses ex-
ecution right before each parallelizable region, compiling it

to an efficient and equivalent parallel script fragment, and
executing that instead. Working dynamically means PASH-
JIT has up-to-date information and can achieve increased
parallelism.

3.2 Preprocessor
Dynamic script interposition without any shell-interpreter
modifications is hard. To achieve this, PASH-JIT opts for
a light-weight script instrumentation pre-processing step: it
marks possible parallelizable regions with code that dynami-
cally determines whether or not to invoke the compiler.

The intuition behind PASH-JIT’s preprocessor is that a syn-
tactic analysis of a shell script is enough to suggest potential
parallelizable regions. This analysis is imprecise: there is no
way to determine whether a command invocation will be pure
ahead of time. Its goal however, is not to find parallelizable
regions exactly, but rather to find potential compilation sites—
PASH-JIT sorts out the details at run-time, using up-to-date
information about the system’s state.

There is a trade-off when choosing the right size for these
regions: the larger the region, the more opportunities ex-
ist for analysis and optimization but the less likely it is for
the entire region to be parallelizable. PASH-JIT targets a
middle-ground: maximal syntactic schedule-free regions—
i.e., command sequences composed using shell primitives
that do not impose scheduling restrictions. By focusing on
maximal schedule-free regions, PASH-JIT minimizes the
number of compiler invocations and maximizes the cross-
command parallelization opportunities for the compiler. Note
that schedule-free regions underapproximate interference-free
regions (§3.1), e.g., two commands composed in sequence ;

that write to different files do not interfere but are not syntac-
tically schedule-free.

The preprocessor finds these maximal regions by search-
ing the AST bottom-up, combining schedule-free subtrees
when they are composed using constructs that do not intro-
duce scheduling constraints (e.g., &, |). When a region cannot
outgrow a certain subtree, it is replaced with a call to the JIT
engine. If successfully compiled, a region is transformed to a
dataflow graph—a convenient and well-studied computation
model amenable to transformation-based optimizations [28].
The instrumented AST resulting from the compilation is fi-
nally translated (unparsed) back to shell code and sent over
to the underlying shell for execution.

3.3 Parsing Library
Parsing and unparsing are key operations in PASH-JIT and
must address several challenges.

PASH-JIT parses lines of shell script as they come in, and
unparses lines in order to execute them in the user’s shell;
it also uses parsing and unparsing during compilation, when
the compilation server emits an optimized string or passes

4

strings to the shell for expansion. PASH-JIT initially used
libdash—an OCaml library built using the dash parser and
part of Smoosh [23, 24]—that caused two main issues. First,
libdash’s unparsing introduced several bugs, as at the time
it was used by the libdash project primiarly for testing and
diagnostics—had much of its was functionality untested. Sec-
ond, libdash parsing introduced significant run-time over-
head due to (1) the cost of forking and executing the OCaml
binary, (2) overheads due to serialization and deserialization
during communication, and (3) suboptimal implementation.
Run-time overheads were a significant concern due to PASH-
JIT’s online JIT parallelization, which intermixes calls to the
compiler during the program’s execution—bringing parsing
and unparsing into the critical path of program execution.

To address these issues, PASH-JIT reimplements its own
version of libdash in Python called Pylibdash. The Pylibdash
implementation develops Python bindings for the dash parser
and completely reimplements unparsing—adding 0.9k LOC
of Python over libdash, structured as a separate library usable
by other projects. The Pylibdash implementation contains
several optimizations such as caching, inlining, and careful
array appending to avoid some accidentally quadratic costs in
the original implementation. As a side benefit, using a custom
implementation reduces the number of dependencies required
by PASH-JIT’s installation.

4 The JIT Engine

The PASH-JIT preprocessor identifies possible parallelizable
regions and instruments the shell script to dynamically de-
termine whether they can be optimized by invoking the JIT
engine. The JIT engine faces two key challenges: it must not
change the original script behavior, and it must run with low
overhead as it is invoked multiple times per script.

The JIT engine is a reflective shell script: by inspecting
the state of the shell and that of the broader system, it can
transparently work with the compiler to determine whether or
not to parallelize a script (Fig. 2). When running scripts with
PASH-JIT, it is helpful to think of the shell as having two
modes: (1) conventional shell mode, where scripts execute
in the original shell context, and (2) PASH-JIT mode, where
the runtime reflects on shell state and invokes a compiler to
determine whether to execute the original or an optimized
version of the target region. To switch from shell mode to
PASH-JIT mode, the JIT engine must carefully save the state
of the user’s shell; to switch back, it must carefully put things
back just the way they were. A shell’s state is quite complex:
beyond saving and restoring variables, the runtime must ac-
count for various shell flags along with other internal shell
state (e.g., the previous exit status, working directory).

shell mode PASH-JIT mode

S

C

R

E

…

S

D

R
…

S Save shell state and
set PASH-JIT state

C Query parallelizing
compiler server

R Restore shell state

E Execute (optimized or
original) fragment

D Gather execution and
debug information

debug
mode

Fig. 2: Overview of JIT engine stages.

4.1 JIT Stages

When running normally, the JIT engine transitions into and
out of PASH-JIT mode once per possible parallelizable re-
gion (Fig. 2): the JIT engine saves the shell state and switches
into PASH-JIT mode (S); then it tries to compile the current
fragment (C); whether successful or not, the JIT engine re-
stores the state and switches back to shell mode (R); and,
finally, either the original fragment or the optimized paral-
lel version is executed (E). With debugging enabled, the JIT
engine switches back into PASH-JIT mode (S) to collect
debugging information (D), restoring again afterwards (R).

Saving (S): When entering a possible parallelizable region,
the first step is to save the shell state—recording the previous
command’s exit status, the values of environment variables,
and the configuration of the shell—essentially, a continuation
that can later be restored to execute the target fragment. Once
the state is saved, PASH-JIT mode reconfigures the user’s
shell to avoid changing script behavior. For example, if the
user’s shell has the -e “exit on error” flag set, the shell should
exit immediately when a command (or a pipeline) returns a
non-zero exit status, unless that command is in a checked po-
sition (e.g., after !, or in the condition of an if or while) [2].
However, failing commands should not stop the JIT itself, so
-e is unset (and will be restored later in (R)).

Compilation (C): With the state saved and shell reconfig-
ured, PASH-JIT tries to compile the script fragment: the JIT
engine queries the compilation server (§5) with the script
fragment (already parsed during preprocessing) along with
the saved shell state, so that the compilation server can try to
expand all of the words in the fragment. The server responds
to indicate whether it managed to optimize the fragment.

Restoring (R): Whether or not compilation was successful,
the JIT engine exits PASH-JIT mode, restoring the contin-
uation saved earlier (S) to prepare to execute the fragment.
One particular challenge in this mode is to restore state while

5

accommodating different shell modes. Suppose PASH-JIT is
in -e mode, trying to run some possible parallelizable region,
and the command before this region exited with status 47
in a checked position, i.e., without forcing the shell to exit.
The JIT engine saves the exit status so as to not overwrite it.
The fragment may depend on the exit status, so PASH-JIT
needs to restore it before running the fragment. But it must be
careful—simply running (exit 47) would force the shell to
exit. Thus PASH-JIT runs the subshell in a checked position:

if (exit "$pash_previous_exit_code"); then
source "$fragment"; ...

else
source "$fragment"; ...

fi

This odd code ensures that the fragment (in identical branches)
has access to the previous exit status (in the checked, condi-
tional position of the if) without exiting when -e is set.

Execution (E): Back in shell mode, the JIT engine executes
the fragment. If the compiler was successful, then the JIT
engine selects the optimized script fragment. If the compiler
failed, the JIT engine falls back to the original fragment. Ei-
ther way, control flows back to the original shell.

Debug mode (S) (D) (R): When PASH-JIT is in debugging
mode, the JIT engine will re-enter PASH-JIT mode after
execution (E) in order to log information about the script,
such as execution time and exit status. Standard execution
skips this extra save/restore cycle.

5 Parallelizing Compilation Server

For each possible parallelizable region, the JIT engine queries
the compiler: can this region actually be optimized? To an-
swer this question, PASH-JIT builds on ideas from the PASH-
AOT [63] dataflow compiler (§5.1). As ever, it focuses on
preserving behavior and minimizing overhead.

To preserve correct behavior in the face of the shell’s dy-
namism, PASH-JIT expands each script region prior to com-
pilation (§5.2). To minimize overhead due to fixed startup
costs—e.g., initialization, dependency loading, logging setup,
and output file arrangement—PASH-JIT packages the new
compiler as a stateful compilation server communicating via
UNIX domain sockets.1

The compilation server is also augmented to support a
larger set of optimization opportunities, by storing and using
information from one compilation to help another. PASH-
JIT’s long-lived compilation server achieves these additional
optimizations by allowing parallelizable regions that work on
independent inputs and outputs to be run in parallel (§5.3)
and by learning to improve its parallelism configuration from
past compilations (§5.4).

1We experimented with both socket and FIFO-based communication, but
we saw no significant performance differences.

5.1 Command Annotations

PASH-JIT uses the command annotation and specification
framework introduced by PASH-AOT [28, 63], extended to
also indicate whether a command invocation is commuta-
tive (§6.1). This framework provides information about a
command invocation’s parallelizability class, inputs, and out-
puts. A command annotation can be used to extract high-level
information about a specific command invocation, i.e., a pre-
cise instantiation of its flags, options, and arguments. For
example, annotations determine whether a given command
invocation is pure and what its inputs and outputs are.

PASH-JIT uses this annotation framework to extract
information for commands that are not shell builtins—
that is, commands like sort and grep. Annotations en-
able analyses and transformations over command invo-
cations by lifting them to pure dataflow nodes in a
dataflow intermediate representation (IR) [28]. For example,
grep -f dict.txt src.txt > out.txt is a dataflow node
with two input files (dict.txt and src.txt) and one output
file (out.txt), which are all extracted from the annotation of
the grep command. Annotations also describe parallelization
opportunities, e.g., grep "pattern" src.txt processes each
line of src.txt independently, and so it can be parallelized.

5.2 Early, Pure Expansion

PASH-AOT can only attempt to compile script fragments
where all words are completely expanded. Running dynam-
ically, PASH-JIT goes beyond PASH-AOT by expanding
words according to the current state of the system (shell, file
system, etc.).

One way to achieve expansion would be for PASH-JIT to
maintain a “mirror” Bash process when initializing, which it
could then query with any word to expand using echo. Every
time PASH-JIT would query the compilation server with a
fragment, it would also provide the latest state of the shell,
which would in turn be passed to the mirror process to ensure
it reflects the latest state. This expansion method would be
correct, as it would leverage the underlying shell. It would,
however, be expensive, since each fragment contains many
unexpanded words and each unexpanded word would have
to be expanded using its own echo command—leading to
unnecessary run-time costs.

PASH-JIT avoids the overhead of a mirror shell by per-
forming its own expansion, relying on the optimistic nature
of the JIT engine (§4): if most common forms can be ex-
panded in the compiler itself, the compiler will succeed often
without incurring interprocess communication overheads; if
expansion fails, PASH-JIT will just run the original fragment.
Armed with this insight, PASH-JIT implements a subset of
expansion in the compilation server itself. PASH-JIT’s cus-
tom expansion is purely functional, in that it does not affect
shell state by setting variables or running command substi-

6

tutions. The expansion routine is implemented in less than
300 LOC of Python, and reduces the compilation overhead
significantly (§7). Expansion takes the host shell’s config-
uration and expands common, safe expansions in as many
positions as possible—in simple commands, pipelines, and
other parallelizable regions.

PASH-JIT’s expansion routine implements most parameter
formats, plain tildes, and appropriate quoting. Currently, it
does not cover impure expansion (e.g., parameter formats that
have side-effects like ${x=foo}, which will set x to foo if
x is unset), since impurity violates the parallelizable region
requirements. It also does not implement a few expansion
cases—e.g., arithmetic expansions of the form $((x + 1))—
that were not seen in the corpus of parallelizable scripts used
to evaluate PASH-JIT (§7). Adding support for unimple-
mented forms would require engineering effort, but not a
fundamental change to PASH-JIT’s expansion. If the ex-
pansion encounters a term it cannot expand—because it is
unimplemented or because it would be impure—the compila-
tion process aborts and PASH-JIT runs the original fragment.

5.3 Dependency Untangling

PASH-JIT’s compilation server makes it easy to detect when
parallelizable regions are independent—including, for exam-
ple, independent program fragments that are sequentially com-
posed with ; or different iterations of a for loop. A key
insight here is the semantics of PASH-JIT’s successful compi-
lation: if the PASH-JIT compiler succeeds on a given region,
that region’s original script fragment must only affect its input
and output streams (files). That is, successful fragment com-
pilation means that the fragment is pure, reading from and
writing to a well-defined set of streams without modifying
any other global system state such as non-temporary streams
or environment variables.

The PASH-JIT compiler thus tracks each parallelizable re-
gion in terms of its read and write sets, which suffice to detect
read-write and write-write dependencies between fragments.
If two fragments (a) compile successfully and (b) have no
dependencies, they can be executed in parallel. This optimiza-
tion improves performance not only because of the parallel
speedup, but also because it overlaps (i.e., pipelines) compila-
tion and execution, reducing net run-time overhead.

To discover independent fragments, the compilation server
(Fig. 3) and JIT engine (Fig. 4) are extended to communicate
about successfully compiled fragments. Coordinating using
exit requests, the compilation server maintains a map of
running fragments. When it receives a compilation request
that succeeds, the server waits for all prior fragments with
dependencies to finish executing; only then does it send the
compiled fragment to the JIT engine for execution in the
background. While the compiled fragment executes in the
background, the JIT engine can exit PASH-JIT mode, and
execution proceeds with the rest of the input script. When

State contains a map from ids to
inputs and outputs.
while True:

req = receive_request()
if reached_script_end(req):
wait_all()
exit()

else if is_exit_request(req):
state.remove_id(req.id)

else if is_compile_request(req):
compile_res = compile(region)
if not compile_res.success:
wait_all()
respond(compile_res)

else if compile_res.success:
Wait until all ids with dependencies
finish executing.
wait_for_dependencies(compile_res.inputs,

compile_res.outputs)
request_id = fresh_id()
state.add_request(request_id, compile_res)
respond(compile_res, request_id)

Fig. 3: Compilation server algorithm (pseudocode) extended for dependency
untangling (Cf.§5.3).

Blocking query
res = query_server(compile_request(region))

if res.success:
Run the compiled code in parallel
fork({
run(compiled)
send_exit(res.id)

})
else:

run(original)
...

Fig. 4: JIT engine algorithm (pseudocode) extended for dependency untan-
gling (Cf.§5.3).

execution reaches another fragment and the JIT engine re-
turns to PASH-JIT mode, the JIT engine will block again
until the compilation server responds. Even if the compilation
server encounters a fragment that fails to compile, the server
blocks on dependencies: the uncompilable fragment might
have arbitrary side-effects.

To ensure that our algorithm is correct, we modeled it using
the SPIN Model Checker [29] and we verified (i) that it does
not lead to deadlocks, (ii) that no failed compiled region is
running simultaneously with any other region, and (iii) that
two regions with dependencies never run at the same time.

5.4 Profile-driven Compiler Configuration

The long-lived PASH-JIT compilation server can additionally
use dynamic information to improve compilation. One par-
ticularly effective optimization is to dynamically determine
maximum parallelism degree. As scripts might already fea-

7

ture task-based parallelism, spawning too many data-parallel
processes can overload the system—leading to higher over-
heads that cut into the speedup or even result in a slowdown.
These slowdowns tend to occur when there are many compu-
tationally light commands with small inputs, i.e., when the
overhead of managing parallelism is higher relative to the
actual work to be done. The PASH-JIT compiler can reflect
on prior fragments to determine an appropriate parallelism
degree.

The compilation server is often queried to compile the same
fragment many times—e.g., in each iteration of a loop. At
run-time, the compiler collects and maintains execution-time
information. As program fragments are recompiled, PASH-
JIT tries progressively narrower parallelization degrees in an
attempt to minimize overall execution time.

6 Commutativity Awareness

Commutative commands can improve parallelization gains by
allowing PASH-JIT to split and process data-parallel partial
inputs in small and order-independent batches. Splitting input
into many small batches improves expected CPU utilization
and allows for additional pipeline parallelism. CPU utiliza-
tion is improved due to an increase in partial input batches:
the more work items, the more uniform the work each par-
allel copy does. Additional pipeline parallelism is achieved
by overlapping input splitting and processing: rather than
reading the entire input before deciding how to split it into
batches, input can be split via small incremental steps that
are immediately handed off to data-parallel commands for
processing.

The PASH-JIT compiler uses these insights to produce
more efficient parallel implementations of scripts that contain
commutative commands. It introduces a few auxiliary nodes
in its intermediate representation (IR) that orchestrate paral-
lel execution for stateless and commutative commands, and
compiler transformations that insert these nodes in a dataflow
graph. It also provides efficient primitives implementing these
nodes when instantiating in the parallel target script.

6.1 Compilation: Dataflow Model

The PASH-JIT compiler operates on a dataflow IR that builds
on PASH-AOT, where commands correspond to nodes and
communication channels correspond to edges between nodes.
To enable commutativity-aware transformations, PASH-JIT
extends PASH-AOT’s annotation framework (§5.1) to in-
dicate whether a command invocation is commutative (in
addition to its parallelizability characteristics).

Command nodes: PASH-JIT introduces the following four
dataflow nodes, which correspond to PASH-JIT-provided
binary commands available in the PATH: c_split, c_wrap,
c_strip, and c_merge. The c_split node takes a single in-

c_split c_merge

c_merge stateless

c_wrap stateless

c_wrap stateless c_merge

...

c_merge commut.

...

commut.

commut. aggregator

batch mode

batch mode

batch mode

batch mode

batch mode

c_strip

c_strip

Fig. 5: Overview of commutativity-aware transformations.

put stream and N output streams. It splits its input into small
batches, prepends a header on each batch identifying its se-
quence number, and then forwards it to one of the N outputs
depending on a load-balancing strategy. Currently, PASH-JIT
implements a round-robin strategy. The c_merge node per-
forms the inverse operation: it merges N input streams into
one and removes any headers. The c_wrap command is used
to wrap stateless commands. It removes the header, forwards
the input to the command, and then adds the header back to
the command output. Finally, c_strip is a single-input-single-
output header-removal node that often precedes commutative
commands.

Transformations: To expose commutativity-aware paral-
lelism, PASH-JIT transforms the dataflow graph; see §2 for an
example. The transformations are visualized in Figure 5. The
first transformation introduces a pair of c_split and c_merge

before any commutative (e.g., sort) or stateless (e.g., grep)
command. Another transformation then tries to eliminate
unnecessary splits and merges, delaying c_merge as late as
possible (i.e., enclosing the biggest possible part of the graph).
If a stateless command follows a c_merge, the command is
wrapped with c_wrap and the c_merge is commuted after it. If
a commutative command follows a c_merge, the command is
parallelized and c_merge is transformed to a set of c_strip
commands. Finally, if a c_split follows a c_merge, then the
two are fused together to the identity function, connecting the
inputs of c_merge with the outputs of c_split.

An important execution invariant is that c_split and
c_merge (or c_strip) satisfy the requirements of well-formed
parentheses, i.e., a c_split must always be followed by a
c_merge or a set of c_strip commands. PASH-JIT’s dataflow
graphs are essentially bimodal, since subgraphs that are be-
tween a c_split and a c_merge will execute with batches,
requiring all commands in them to be wrapped with c_wrap,
while the rest of the dataflow graph executes like the original.

8

Tab. 1: Benchmark summary. Summary of all the benchmarks used to evaluate PASH-JIT and their characteristics.

Benchmark Set Short Label Sections Scripts LOC Input Source

1 POSIX Test Suite PosixTests §7.1 7 29k — [26]
2 Common & Classic One-liners Classics §7.1–7.3 10 123 14G [6, 7, 33, 41, 59]
3 Bell Labs Unix50 Unix50 §7.1–7.3 36 142 21G [8, 37]
4 COVID-19 Transit Analytics COVID-mts §7.1–7.3 4 79 3.4G [62]
5 Natural-Language Processing NLP §7.1–7.3 21 306 1060 books [15]
6 NOAA Weather Analysis AvgTemp §7.1–7.3 1 31 36.2G [65]
7 Wikipedia Web Indexing WebIndex §7.1–7.3 1 116 1000 files [63]
8 Video/Audio Processing MediaConv §7.1–7.3 2 35 2.2+2.2G [52, 56]
9 Program Inference ProgInf §7.1–7.3 1 18 2330 libraries [64]
10 Traffic/PCAP Log Analysis LogAnalysis §7.1–7.3 2 63 10–20G [52, 56]
11 Genomics Computation Genomics §7.1–7.3 1 34 100G [11, 51]
12 AUR Package Compilation AurPkg §7.1–7.3 1 27 150 packages [13]
13 Encryption/Compression FileEnc §7.1–7.3 2 44 20G [43]
14 Microbenchmarks MicroBench §7.3 1 6 — custom (ours)

6.2 Runtime: Commutativity Implementation
The runtime splits the source in small batches (that contain
complete lines) in a round-robin fashion.

Protocol: To reconstruct the order of different outputs while
merging, PASH-JIT needs to keep track of ordering as input
batches are sent to different command copies for processing
and, more generally, as input-output batches flow throughout
the parallelized script. To achieve this, PASH-JIT wraps all
input batches with a header that contains the three following
fields: block_id, for ordering blocks; block_size, the size of
the block in bytes; and is_last, a boolean value true only for
the last block with a given block_id.

Utilization and deadlocks: PASH-JIT must avoid dead-
locks during write operations between the wrapper commands
and the commands they wrap—i.e., the two should never be
blocked trying to write at the same time. Additionally, the
wrappers must maximize utilization of the command they
wrap, i.e., they should never wait on input unnecessarily. To
avoid deadlocks, PASH-JIT wrappers use non-blocking read
and write; and to increase utilization and reduce waiting time,
they write in small chunks of 32KB.

Handling inputs with long lines: An input may contain
lines that are longer than the c_split block size. Such an
event leads to non-uniform block sizes and high memory con-
sumption, because each block must be read and sized com-
pletely before splitting and adding to the header. PASH-JIT
addresses this issue by introducing the is_last header field
in c_split: if a block exceeds the specified size (due to con-
taining large lines) the block is split into multiple blocks; all
blocks share the same block_id but only the last sets is_last
to true. Sub-blocks with the same block_id are sent down-
stream in-order, and therefore downstream commands can
use the is_last information to correctly reconstruct the out-
put and know when a block ends. Block splitting reduces
memory requirements and improves performance, as it allows
for higher utilization regardless of the frequency of newlines.
And blocks maintain a constant size throughout the flow, de-

spite the presence of commands with high output-to-input
ratio such as curl.

Handling small inputs: Inputs that are smaller than
c_split’s block size lead to a single block and thus se-
quential execution. PASH-JIT’s c_split addresses this is-
sue by first attempting to read an input size s equal to
downstream_count * block_size bytes before forwarding
any blocks. If the total input is larger than s, this buffering
ensures that all parallel instances will get at least one block;
if the total input is smaller than s, then the input read is re-
split into blocks fairly and forwarded downstream. The size
s is configurable and defaults to 1MB, which we empirically
determined avoids both high overhead and low utilization.

7 Evaluation

The PASH-JIT implementation comprises 6784 lines of
Python (preprocessor, compilation server, expansion, com-
piler, and parser), 1011 lines of shell code (JIT engine and
various utilities), and 1174 lines of C (commutativity primi-
tives, and other runtime components). All line counts are of
semantically meaningful lines only.

To evaluate PASH-JIT, we use three experiments on bench-
marks (Tab. 1). The first experiment focuses on PASH-JIT’s
compatibility and uses the entire POSIX test suite as well
as additional scripts (§7.1). The second experiment focuses
on the performance gains achieved by PASH-JIT’s paral-
lelization, evaluated using a variety of benchmarks and work-
loads (§7.2). The last experiment zooms into PASH-JIT-
internal overheads and associated optimizations (§7.3).

Hardware & software setup: PASH-JIT was run on 64
physical × 2.1GHz Intel Xeon E5-2683 cores with 512GB of
RAM, Debian 4.9.144-3.1, GNU Coreutils 8.30-3, GNU Bash
4.4.20(1), and Python 3.7.3. There is no special configuration
in hardware or software. We use Dash v.0.5.8-2.10 and Ksh
v.93u+ 2012-08-01. All scripts were executed completely un-
modified, using environment variables, loops, and other shell

9

Tab. 2: Correctness results. Running the POSIX test suite on Bash and
PASH-JIT. Tests are grouped in rows by theme. Columns contain the group
name, total tests, non-applicable tests, and passing tests for PASH-JIT and
Bash.

Test Suite Tests Untested PASH-JIT Bash

1 Parsing 38 5 33/33 33/33
2 Expansion 83 8 71/75 71/75
3 Errors 38 3 26/35 27/35
4 Commands and redirects 99 2 96/97 96/97
5 Subshells and pipelines 56 7 46/49 46/49
6 Builtins 113 40 60/73 61/73
7 Special cases 67 21 42/46 42/46

constructs. To minimize statistical non-determinism, we host
our experimental infrastructure on our own premises, avoid
sharing with other research groups, and repeat the experiments
several times noting imperceptible variance.

7.1 Correctness
We evaluate the correctness of PASH-JIT across all bench-
marks from Tab. 1 by checking that PASH-JIT’s stdout and
exit status are equivalent to the ones produced from Bash.
The output is over 650 million lines (18GB), taken from 82
scripts, in all of which PASH-JIT’s output and exit status are
correct. To increase our confidence on correctness, we use the
POSIX shell test suite with both Bash and PASH-JIT.

Benchmarks: The POSIX test suite is a thorough evaluation
of shell behavior, comprising 1007 ‘assertions’ evaluated us-
ing 494 distinct, assertion-numbered test cases over 29k LOC
of shell scripts (plus library support). We exclude (a) 78 test
cases because they test the platform (e.g., locales) rather than
the shell, and (b) 8 cases because they test interactivity, which
is out of scope for PASH-JIT (§1). These leave a total of 408
runnable test cases. The test cases use a mix of shell language
features (e.g., redirection, pipes), builtin commands (e.g., set,
echo), and standard UNIX utilities (e.g., printf, grep). The
POSIX suite tests many corner cases of shell behavior—e.g.,
that aliases ending in space continue alias expansion (Asser-
tion no. 284), that pipelines take precedence over redirections
in their constituent commands (no. 454), or that return in
a trap action restores the previous command’s exit status
(no. 651)—totaling several thousand behaviors. The exact
number of ‘tests’ is hard to quantify: some test cases check
a single behavior (e.g., expanding an unset variable under
set -u); others check hundreds (e.g., many different charac-
ters escape properly; many different arithmetic expressions
evaluate correctly).

Results: PASH-JIT overwhelmingly agrees with Bash
(Tab. 2). PASH-JIT passes 374 and fails 34 POSIX tests,
while Bash passes 376 and fails 32 POSIX tests. PASH-JIT
diverges from Bash on the test cases for a mere 2 tests (no.
430 and 691) where Bash passes but PASH-JIT fails. These
two failures concern the ranges of non-zero exit status and

are in fact due to an unusual inconsistency in Bash itself (see
“Discussion”, below).

When running the test suite, PASH-JIT invokes the com-
piler a total of 3304 times, each for a different potentially
optimizable fragment; 713 (20%) of those invocations suc-
cessfully compile, i.e., PASH-JIT generates and runs parallel
code. Successful compilation does not necessarily translate to
a speedup on individual tests, though: the POSIX suite tends
to test with small scripts, so the compiled fragments contain
very little computation—not much for PASH-JIT to optimize.

Discussion: PASH-JIT diverges from Bash in two cases
only in the exit status returned. Both PASH-JIT and Bash exit
with an error: Bash returns 1, and PASH-JIT returns 127. For
the two failing cases, POSIX mandates (since 2008) that the
exit status be between 1–125, making PASH-JIT’s behavior
incorrect. Why does PASH-JIT produce a different status?

Bash is inconsistent when called with the -c flag. Con-
trary to most other shells (i.e., dash, ksh, mksh, posh, sash,
Smoosh, yash, zsh), Bash is the only shell that, when fail-
ing during -c invocations, exits with 127—i.e., outside the
POSIX-mandated range. When PASH-JIT invokes the un-
derlying Bash interpreter using -c in order to set $0, it re-
ceives and propagates an exit status that does not comply
with POSIX. The rest of the Bash failing tests are caused
by various subtleties; it is not clear which failures are ‘true
bugs’ and which are considered desirable divergences from
the spec. Greenberg and Blatt [24] discuss how implementa-
tions diverge from the POSIX spec. PASH-JIT mirrors the
behavior of Bash in all those cases.

To put the number of diverging tests of PASH-JIT and Bash
into perspective, we note that other production shells fail in
significantly greater numbers: dash passes 3 tests that Bash
fails and fails 20 that Bash passes; ksh passes 2 tests that Bash
fails and fails 20 that Bash passes; and zsh cannot run the
test suite at all. These results combined show that, in practice,
PASH-JIT is virtually indistinguishable from its underlying
shell interpreter on POSIX features.

7.2 Performance

We evaluate PASH-JIT’s performance on 12 sets of real-world
shell scripts taken from a variety of sources (Tab. 1, rows 2–
13), totalling 82 shell scripts and 1015 LOC.

Benchmarks: Classics and Unix50 contain classic and re-
cent (c. 2019) scripts making heavy use of UNIX and Linux
built-in commands. COVID-mts contains four scripts used to
analyze real telemetry data from mass-transit schedules dur-
ing a large metropolitan area’s COVID-19 response. NLP con-
tains several scripts from UNIX-for-poets, a tutorial for devel-
oping programs for natural-language processing out of UNIX
and Linux utilities. AvgTemp contains a large script download-
ing and processing multi-year temperature data across the US.
WebIndex is a large multi-stage script for web crawling and

10

0

10

20

30

C
la

ss
ic

s

U
ni

x5
0

C
O
V

ID
−m

ts
N

LP

S
p

ee
d

u
p

 v
s.

 b
as

h

A
vg

Tem
p

W
eb

In
de

x

M
ed

ia
C
on

v1

M
ed

ia
C
on

v2

Pro
gI

nf

Log
A

na
ly

si
s1

Log
A

na
ly

si
s2

G
en

om
ic

s

A
ur

Pkg

File
Enc

1

File
Enc

2

PaSh−JIT

PaSh−AOT

Fig. 6: PASH-JIT Performance. PASH-JIT speedup (vs. PASH-AOT whenever possible) over Bash for Tab. 1 rows 2–5 (left, box) and 6–13 (right, bar) (Cf.§7.2).

indexing, using a variety of third-party and built-in utilities.
MediaConv contains two scripts that process, transform, and
compress video and audio files. ProgInf contains a script that
downloads JavaScript packages from the npm registry and ap-
plies a security-oriented static program analysis. LogAnalysis
contains two scripts that apply typical system-administration
and network-traffic analyses over log files. Genomics con-
tains a script that processes next-generation sequencing data
for the purposes of diagnostic virology. AurPkg contains the
main script that compiles, builds, and packages software for
the AUR Linux distribution. Finally, FileEnc contains long
aliases that encrypt and compress files.

Results: PASH-JIT surpasses PASH-AOT’s speedups (vs.
Bash) on existing benchmarks and extends speedups to new
ones (Fig. 6). Box-plots show results for multi-benchmark
suites (Tab. 1, rows 2–5) and bars for individual scripts (Tab. 1,
rows 5–13). PASH-JIT can run several more scripts than
PASH-AOT (for which performance bars are set to 0). Across
all benchmarks, PASH-JIT achieves an average speedup of
5.86× (vs. 2.9× for PASH-AOT) and a maximum speedup
of 33.7× (vs. 15.38× for PASH-AOT).

A few scripts exhibit slowdowns when compiler startup,
runtime, and parallelization overheads (splitting, merging)
start dominating. PASH-JIT decelerates 14 scripts; PASH-
AOT decelerates 20 scripts—and cannot run 30 additional
scripts that PASH-JIT parallelizes. The scripts that PASH-JIT
decelerates either have short sequential running times (8ms–
10s) or have very short-running fragments in tight loops (e.g.,
1K iterations, 14ms per iteration). For example, PASH-JIT
decelerates Unix50’s 20.sh (Bash: 8ms; PASH-JIT: 1.3s) and
NLP’s no-vowel.sh (Bash: 14s; PASH-JIT: 0.24×), on which
PASH-AOT cannot operate.

Discussion: PASH-JIT is faster than PASH-AOT on all
suites 2–5 (w.r.t. average) and on all individual benchmarks
5–13, often by a significant margin (3.1×).

PASH-JIT speeds up many scripts PASH-AOT cannot, as
PASH-AOT’s ahead-of-time parallelization cannot reason
about the shell’s dynamic features. PASH-AOT offers no
speedup on the NLP suite, nor on any individual scripts except

PaSh−JIT PaSh−JIT no_prof PaSh−JIT no_prof no_du

0

10

20

30

N
LP

S
p

ee
d

u
p

 v
s.

 b
as

h

A
vg

Tem
p

M
ed

ia
C
on

v1

M
ed

ia
C
on

v2

Pro
gI

nf

Log
A

na
ly

si
s1

Log
A

na
ly

si
s2

G
en

om
ic

s

A
ur

Pkg

File
Enc

1

File
Enc

2

Fig. 7: PASH-JIT Dynamic Optimizations. PASH-JIT speedup over Bash
when toggling profile-driven compiler configuration and dependency untan-
gling for Tab. 1 row 5 (left, box) and 6, 8–13 (right, bar) (Cf.§7.3).

for AvgTemp and WebIndex.
Compared to Bash, PASH-JIT is faster (or at least as good)

in all cases, except when the given script is very short-running
(e.g., unix50-20.sh), or with a tight loop with a very short-
running body (e.g., nlp-no-vowel.sh).

7.3 Further Microbenchmarks

This section zooms into the benefits of PASH-JIT’s optimiza-
tions targeting dependency untangling, profile-driven com-
piler configuration, commutativity analysis, and JIT engine
overheads.

Dynamic optimizations: To better understand the benefits
of dependency untangling and profile-driven compiler con-
figuration (CC), we use benchmarks that have sequences of
statements—e.g., some form of sequential composition or
for-loops: rows 5, 6, 8–13 from Tab. 1. One-line scripts such
as Unix50 and WebIndex feature single pipelines and thus
cannot benefit from any inter-region optimizations.

Across all scripts and compared to Bash, PASH-JIT
achieves a speedup of 8.17×. PASH-JIT without profile-
driven CC achieves 7.58×, and additionally without depen-
dency untangling 0.55× (Fig. 7). The 0.55× slowdown is due
to limited intra-region parallelization in these benchmarks.

11

PaSh−JIT PaSh−JIT no_comm

0

5

10

15

C
la

ss
ic

s

U
ni

x5
0

C
O
V

ID
−m

ts

S
p

ee
d

u
p

 v
s.

 b
as

h

A
vg

Tem
p

W
eb

In
de

x

Fig. 8: PASH-JIT Commutativity Awareness. PASH-JIT speedup over
Bash when toggling commutativity awareness for Tab. 1 rows 2–4 (left, box)
and 6, 7 (right, bar) (Cf.§7.3).

Profile-driven CC may slightly reduce speedup in highly par-
allelizable scripts, because it explores lower parallelization
degrees.

Commutativity awareness: To evaluate the benefits of
commutativity-related optimizations, we focus on all scripts
with intra-region parallelization potential: Classics, Unix50,
COVID-mts, AvgTemp, and WebIndex; the performance of
the rest is affected negligibly by changes to single-region
transformations. We disable all dynamic optimizations to
isolate the benefits of commutativity, and compare with the
sequential Bash baseline.

Commutativity-aware PASH-JIT achieves an average
speedup of 4.52× and a maximum of 14.68× (Fig. 8). With-
out commutativity-related optimizations, PASH-JIT achieves
an average speedup of 3.72× and a maximum of 15.38×.
Commutativity improves the average case but not cases that
already see high speedups, as these (1) have negligible over-
heads coming from input reading—most overheads come due
to line processing—and (2) commutativity extensions add
some overhead due to the c_wrap primitive.

Config. Time (s)

Bash 0.008
PASH-JIT -esd 59.334
PASH-JIT -sd 15.376
PASH-JIT -d 6.124
PASH-JIT 4.708

JIT engine overhead: To evaluate
the benefits of PASH-JIT’s runtime
optimizations, we design a worst-case
parallelization benchmark: a script
that contains a for loop that performs
100 iterations of echo hi. A tight loop
with a minimal-overhead body empha-
sizes the JIT engine overheads by allowing no paralleliza-
tion gains. The table on the right shows the run-time perfor-
mance of four PASH-JIT configurations compared to Bash:
(1) PASH-JIT without custom expansion, compilation server,
and dynamic optimizations, (2) PASH-JIT without compila-
tion server, and dynamic optimizations, (3) PASH-JIT without
the dynamic optimizations, and (4) the complete PASH-JIT.
PASH-JIT’s runtime optimizations (custom expansion, com-
pilation server, and dependence untangling) improve perfor-
mance by 12× (over the -esd configuration without them).
As echo hi writes to stdout, dependence untangling does not
manage to run it in parallel, and thus its benefit is only due

to pipelining. Even then, PASH-JIT’s JIT engine overhead is
not negligible (about 47ms per JIT invocation), as it needs to
save the state and invoke the compiler for every iteration of
the loop body.

8 Related Work

Parallel shell scripting: Recent work addresses signifi-
cant challenges related to automatic shell script paralleliza-
tion. POSH [52] and PASH-AOT [63] are mostly-automated
ahead-of-time shell-script parallelization systems; as de-
scribed earlier, these systems focus on fully expanded shell
pipelines that do not make use of dynamic features. Recent
work explored an order-aware dataflow model as a foundation
for modeling the transformations these systems perform and
proving them correct [28]. To enable divide-and-conquer par-
allelism, KumQuat [55] proposes a program-synthesis tech-
nique for generating aggregators for black-box commands.

PASH-JIT builds on all this prior work, addressing fun-
damental limitations in static, ahead-of-time parallelization:
AOT approaches apply to a very small subset of real shell
scripts. By opting for just-in-time parallelization, PASH-JIT
achieves parallel script behavior that is practically indistin-
guishable from the sequential execution—and ample opportu-
nities for additional acceleration.

Other work on shell script parallelization either requires
manual effort or is applicable to a smaller subset of scripts
than our work. Such work includes: utilities like qsub [19],
SLURM [66], and parallel [58]; shells with non-linear pipe
topologies [17, 40, 56]; and using the shell itself as a DSL for
concurrency [22].

Unix-related parallelization: There has been a significant
body of work on parallel (and distributed) UNIX and UNIX-
like environments [4, 44, 47], including shell-oriented efforts
such as Plan9’s rc [49]. Contrary to PASH-JIT, these systems
did not (aim to) offer full compatibility with the sequential
UNIX shell. They also focused on systems-level and program-
runtime support, rather than automated program analyses and
transformations.

Just-in-time compilation: Just-in-time compilation has
been studied for long time [3], mainly in two contexts: (1)
as a compilation technique for interpreted languages such as
JavaScript [20], where critical type information is unavail-
able prior to execution; and (2) as a performance optimiza-
tion over ahead-of-time compilation, allowing for specializa-
tion [30, 60], loop unrolling and function inlining [9, 50], and
other profile-guided optimizations [34, 46]. PASH-JIT draws
inspiration from work in both contexts—resolving unavailable
dynamic information at run-time and performing additional
optimizations. It also leverages the optimistic compilation
technique employed commonly by just-in-time compilers:
when it fails to compile (parallelize), it simply runs the origi-
nal fragment using the shell interpreter as a fallback option.

12

PASH-JIT differs from most JITs, dealing with different chal-
lenges: it operates at a higher level of abstraction, in a unique
programming environment with no single unified runtime.

PASH-JIT also draws inspiration from staged compila-
tion [14] and partial evaluation [32]. These techniques per-
form some compilation ahead-of-time, waiting for the runtime
to specialize and further optimize when there is more infor-
mation about the environment of the target program and how
it is used.

Parallelization in other contexts: More general paralleliza-
tion support can be grouped into two categories: languages
and tools. One approach to parallelization support is to use
tools that requires writing in a new higher-level programming
language [18, 21, 36] or a dataflow-based model embedded in
an existing language [5,12,16,45,57,67]. These tools usually
offer automation, but require re-expressing existing compu-
tations in domain-specific programming models; PASH-JIT
operates on completely unmodified POSIX shell scripts that
use unusual features and obscure corner cases.

Another approach to parallelization support uses tools that
provide automatic parallelization for standard sequential code,
requiring no program modifications but often posing limita-
tions with respect to the granularity of the parallelism that they
can extract. The general approach started with explicit DOALL
and DOACROSS annotations [10, 38], continuing with analysis-
based compilers [27, 48, 54], and more recent work using
profiling-guided speculation [1, 31, 35, 42, 61]. PASH-JIT
draws inspiration from this line of work: it does not require
manual modification to user code, and it leverages run-time
information to optimize and parallelize user scripts. Exist-
ing tools work on imperative code with memory accesses,
but PASH-JIT works at a higher level of abstraction: com-
mands that affect the file system and the broader executing
environment.

Shell correctness and POSIX compliance: Smoosh [24]
offers a formalized, executable reference semantics for the
POSIX shell, aiming to address subtleties in the standard [2].
PASH-JIT leverages Smoosh to identify and resolve issues
in its JIT engine (§4) and to guide its early expansion rou-
tine (§5.2). It also builds on Smoosh’s analysis to leverage
the POSIX test suite for characterizing shell behavior.

PASH-JIT reimplements Smoosh’s libdash [23], which
presents dash’s parser as a library (§3.3). We chose
libdash over Morbig [53] because (1) libdash reuses dash’s
production-grade parser, and (2) libdash supports line-
oriented input, but Morbig is strictly ahead-of-time.

Resurgence of shell research: Recent shell research [24,25,
39,43,52,55,56,63] highlights renewed interest in shell script-
ing both as a vehicle for impactful research and as a target
worthy of scientific attention. We see PASH-JIT as a natural
continuation of the insights and research behind recent shell-
script parallelization systems [25, 28, 52, 63], allowing other
researchers to leverage PASH-JIT’s POSIX-compliant high-

performance just-in-time compilation in their future work.

9 Discussion & Conclusion

The shell provides a dynamic programming language with
complex evaluation-and-expansion semantics and ubiquitous
side-effects—effects that interact with the entire UNIX system
similar to how a conventional programming language interacts
with its runtime environment. The benefits of just-in-time
compilation for dynamic languages are clear, and PASH-JIT
is the first JIT compiler that targets challenges unique in the
UNIX shell ecosystem. PASH-JIT forms a promising drop-in
shebang replacement: its POSIX compliance rivals shells in
widespread use; and its performance benefits go well beyond
the state of the art.

Interactivity: PASH-JIT’s design goals (§1) do not include
interactivity; an interactive shell switches between consuming
its input (shell commands) and redirecting it to its execut-
ing commands—challenging for PASH-JIT’s loose coupling.
Furthermore, avoiding shell modifications leads to additional
runtime overhead (since the state of the shell has to be re-
flected upon and is not accessible with a single dereference).
Adding robust support for interactivity and improving runtime
overhead would likely require a more intrusive design, e.g., al-
tering Bash’s source and interposing directly. However, such a
design would make PASH-JIT Bash-specific, requiring users
to install a new shell, and would significantly complicate the
engineering and maintenance effort involved.

Expansion: Some of PASH-JIT’s expansion behaves in a
way not exactly as specified by POSIX, although we conjec-
ture (and our evaluation confirms, §7) it is safe. For example,
pipelines are supposed to expand each component in its own
subshell (though the last component may run in the outer shell,
depending on a shell’s implementation choices). PASH-JIT’s
expansion operates on each component of the pipeline early;
each component uses its own copy of the shell environment,
to simulate the subshells. We haven not proved these early
expansions sound, and it would be interesting future work to
pursue that, e.g., by using Smoosh’s semantics.

Command annotations: PASH-JIT’s performance bene-
fits depend on the existence of command parallelizability
annotations. The annotations used by PASH-JIT depend on
the PASH-AOT annotation library [63], which includes many
commands in the POSIX and GNU Coreutils sets. Apart
from commands in these sets, a script may contain other
commands—for which PASH-JIT will lack annotations and
thus will not attempt to parallelize to maintain soundness (§1).
To better harness PASH-JIT parallelization in their scripts,
users can: (1) opt for more restricted, rather than more general,
utilities with more constrained and thus parallelizable behav-
iors (e.g., use cut rather than awk when projecting columns,
as awk programs are not parallelizable in general); or (2) add

13

their own annotations for custom commands to inform PASH-
JIT on how to parallelize them.

Enabling other analyses: Even though PASH-JIT is
mainly focused on parallelization, its just-in-time structure
is not limited to it. By slightly modifying the preprocessor
and by replacing the compilation server logic, PASH-JIT can
be made to perform different types of analyses and transfor-
mations, while maintaining its benefits—compliance with the
underlying shell, loose coupling, and low runtime overheads.
This enables exciting avenues of future tooling and support for
the shell, like incremental execution, automatic distribution,
and safety monitoring.

Conclusion: Fundamentally, PASH-JIT shows that it is pos-
sible to build a just-in-time shell-script parallelization infras-
tructure that is substantially faster and more applicable than
prior work, is loosely coupled, and addresses critical chal-
lenges associated with the shell ecosystem’s polyglot runtime
environment. But also, PASH-JIT is not a toy: it enables other
researchers to use a production-grade POSIX-compliant shell
compiler for impactful future work.

Acknowledgements: We would like to thank Achilles Bene-
topoulos, Ben Karel, Caleb Stanford, the OSDI 2022 review-
ers, and our shepherd, Robert Soulé, for discussions and feed-
back that helped improve the presentation of the paper; the
OSDI 2022 AE reviewers for feedback that improved this
paper’s artifact; the participants of UCSC’s LSD seminar for
early discussions on dependency untangling; and the open-
source developers who have contributed to PASH. This ma-
terial is based upon work supported by DARPA contract no.
HR00112020013 and no. HR001120C0191, and NSF awards
CCF 1763514 and 2008096.

References

[1] Sotiris Apostolakis, Ziyang Xu, Greg Chan, Simone
Campanoni, and David I August. Perspective: A sen-
sible approach to speculative automatic parallelization.
In Proceedings of the Twenty-Fifth International Con-
ference on Architectural Support for Programming Lan-
guages and Operating Systems, pages 351–367, 2020.

[2] The Austin Group. POSIX.1 2017: The Open Group
Base Specifications Issue 7 (IEEE Std 1003.1-2008),
2018.

[3] John Aycock. A brief history of just-in-time. ACM
Computing Surveys (CSUR), 35(2):97–113, 2003.

[4] Amnon Barak and Oren La’adan. The MOSIX multi-
computer operating system for high performance clus-
ter computing. Future Generation Computer Systems,
13(4):361–372, 1998.

[5] Jonathan C Beard, Peng Li, and Roger D Chamberlain.
Raftlib: a C++ template library for high performance

stream parallel processing. The International Journal of
High Performance Computing Applications, 31(5):391–
404, 2017.

[6] Jon Bentley. Programming pearls: A spelling checker.
Commun. ACM, 28(5):456–462, May 1985.

[7] Jon Bentley, Don Knuth, and Doug McIlroy. Pro-
gramming pearls: A literate program. Commun. ACM,
29(6):471–483, June 1986.

[8] Pawan Bhandari. Solutions to unixgame.io, 2020. Ac-
cessed: 2020-04-14.

[9] Carl Friedrich Bolz. Meta-tracing just-in-time compila-
tion for RPython. PhD thesis, Universitäts-und Landes-
bibliothek der Heinrich-Heine-Universität Düsseldorf,
2014.

[10] Michael Burke and Ron Cytron. Interprocedural depen-
dence analysis and parallelization. In Proceedings of the
1986 SIGPLAN Symposium on Compiler Construction,
SIGPLAN ’86, pages 162–175, New York, NY, USA,
1986. ACM.

[11] Enrico Cappellini, Frido Welker, Luca Pandolfi, Jazmín
Ramos-Madrigal, Diana Samodova, Patrick L Rüther,
Anna K Fotakis, David Lyon, J Víctor Moreno-Mayar,
Maia Bukhsianidze, et al. Early pleistocene enamel pro-
teome from dmanisi resolves stephanorhinus phylogeny.
Nature, 574(7776):103–107, 2019.

[12] Paris Carbone, Asterios Katsifodimos, Stephan Ewen,
Volker Markl, Seif Haridi, and Kostas Tzoumas. Apache
flink: Stream and batch processing in a single engine.
IEEE Data Eng. Bull., 38:28–38, 2015.

[13] Armando Cerna. Pacaur building script.

[14] Craig Chambers. Staged compilation. ACM SIGPLAN
Notices, 37(3):1–8, 2002.

[15] Kenneth Ward Church. Unix™for poets. Notes of a
course from the European Summer School on Language
and Speech Communication, Corpus Based Methods,
1994.

[16] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Sim-
plified data processing on large clusters. Commun. ACM,
51(1):107–113, January 2008.

[17] Tom Duff. Rc—a shell for plan 9 and unix systems.
AUUGN, 12(1):75, 1990.

[18] Matteo Frigo, Charles E Leiserson, and Keith H Ran-
dall. The implementation of the cilk-5 multithreaded
language. ACM Sigplan Notices, 33(5):212–223, 1998.

14

[19] Wolfgang Gentzsch. Sun grid engine: Towards creating
a compute power grid. In Proceedings First IEEE/ACM
International Symposium on Cluster Computing and the
Grid, pages 35–36. IEEE, 2001.

[20] Google. V8 javascript engine. https://developers.
google.com/v8/.

[21] Michael I Gordon, William Thies, Michal Karczmarek,
Jasper Lin, Ali S Meli, Andrew A Lamb, Chris Leger,
Jeremy Wong, Henry Hoffmann, David Maze, et al. A
stream compiler for communication-exposed architec-
tures. In ACM SIGOPS Operating Systems Review,
volume 36, pages 291–303. ACM, 2002.

[22] Michael Greenberg. The posix shell is an interac-
tive dsl for concurrency. https://cs.pomona.edu/
~michael/papers/dsldi2018.pdf, 2018.

[23] Michael Greenberg. libdash. https://github.com/
mgree/libdash, 2019. [Online; accessed December 6,
2021].

[24] Michael Greenberg and Austin J. Blatt. Executable for-
mal semantics for the POSIX shell: Smoosh: the sym-
bolic, mechanized, observable, operational shell. Proc.
ACM Program. Lang., 4(POPL):43:1–43:30, January
2020.

[25] Michael Greenberg, Konstantinos Kallas, and Nikos
Vasilakis. Unix shell programming: The next 50 years.
In Proceedings of the Workshop on Hot Topics in Op-
erating Systems, HotOS ’21, page 104–111, New York,
NY, USA, 2021. Association for Computing Machinery.

[26] The Open Group. Posix. https://pubs.opengroup.
org/onlinepubs/9699919799/, 2018. [Online; ac-
cessed November 22, 2019].

[27] Mary W Hall, Jennifer M Anderson, Saman P. Ama-
rasinghe, Brian R Murphy, Shih-Wei Liao, Edouard
Bugnion, and Monica S Lam. Maximizing multipro-
cessor performance with the suif compiler. Computer,
29(12):84–89, 1996.

[28] Shivam Handa, Konstantinos Kallas, Nikos Vasilakis,
and Martin C. Rinard. An order-aware dataflow model
for parallel unix pipelines. Proc. ACM Program. Lang.,
5(ICFP), aug 2021.

[29] Gerard J. Holzmann. The model checker spin. IEEE
Transactions on software engineering, 23(5):279–295,
1997.

[30] Kazuaki Ishizaki, Motohiro Kawahito, Toshiaki Yasue,
Hideaki Komatsu, and Toshio Nakatani. A study of de-
virtualization techniques for a java just-in-time compiler.
In Proceedings of the 15th ACM SIGPLAN conference

on Object-oriented programming, systems, languages,
and applications, pages 294–310, 2000.

[31] Nick P Johnson, Hanjun Kim, Prakash Prabhu, Ayal
Zaks, and David I August. Speculative separation for
privatization and reductions. ACM SIGPLAN Notices,
47(6):359–370, 2012.

[32] Neil D Jones. An introduction to partial evaluation.
ACM Computing Surveys (CSUR), 28(3):480–503, 1996.

[33] Dan Jurafsky. Unix for poets, 2017.

[34] Konstantinos Kallas and Konstantinos Sagonas. Hiperjit:
A profile-driven just-in-time compiler for erlang. In
Proceedings of the 30th Symposium on Implementation
and Application of Functional Languages, pages 25–36,
2018.

[35] Hanjun Kim, Nick P Johnson, Jae W Lee, Scott A
Mahlke, and David I August. Automatic speculative
doall for clusters. In Proceedings of the Tenth Interna-
tional Symposium on Code Generation and Optimiza-
tion, pages 94–103, 2012.

[36] Milind Kulkarni, Keshav Pingali, Bruce Walter, Ganesh
Ramanarayanan, Kavita Bala, and L Paul Chew. Opti-
mistic parallelism requires abstractions. ACM SIGPLAN
Notices, 42(6):211–222, 2007.

[37] Nokia Bell Labs. The unix game—solve puzzles using
unix pipes, 2019. Accessed: 2020-03-05.

[38] Amy W. Lim and Monica S. Lam. Maximizing par-
allelism and minimizing synchronization with affine
transforms. In Proceedings of the 24th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Lan-
guages, POPL ’97, pages 201–214, New York, NY, USA,
1997. ACM.

[39] Aurèle Mahéo, Pierre Sutra, and Tristan Tarrant. The
serverless shell. In Proceedings of the 22nd Interna-
tional Middleware Conference: Industrial Track, pages
9–15, 2021.

[40] Chris McDonald and Trevor I Dix. Support for graphs of
processes in a command interpreter. Software: Practice
and Experience, 18(10):1011–1016, 1988.

[41] Malcolm D McIlroy, Elliot N Pinson, and Berkley A
Tague. Unix time-sharing system: Foreword. Bell Sys-
tem Technical Journal, 57(6):1899–1904, 1978.

[42] Mojtaba Mehrara, Jeff Hao, Po-Chun Hsu, and Scott
Mahlke. Parallelizing sequential applications on com-
modity hardware using a low-cost software transactional
memory. ACM Sigplan Notices, 44(6):166–176, 2009.

15

https://developers.google.com/v8/
https://developers.google.com/v8/
https://cs.pomona.edu/~michael/papers/dsldi2018.pdf
https://cs.pomona.edu/~michael/papers/dsldi2018.pdf
https://github.com/mgree/libdash
https://github.com/mgree/libdash
https://pubs.opengroup.org/onlinepubs/9699919799/
https://pubs.opengroup.org/onlinepubs/9699919799/

[43] Jürgen Cito Michael Schröder. An empirical investi-
gation of command-line customization. arXiv preprint
arXiv:2012.10206, 2020.

[44] Sape J Mullender, Guido Van Rossum, AS Tanenbaum,
Robbert Van Renesse, and Hans Van Staveren. Amoeba:
A distributed operating system for the 1990s. Computer,
23(5):44–53, 1990.

[45] Derek G. Murray, Frank McSherry, Rebecca Isaacs,
Michael Isard, Paul Barham, and Martín Abadi. Na-
iad: A timely dataflow system. In Proceedings of the
Twenty-Fourth ACM Symposium on Operating Systems
Principles, SOSP ’13, pages 439–455, New York, NY,
USA, 2013. ACM.

[46] Guilherme Ottoni. Hhvm jit: A profile-guided, region-
based compiler for php and hack. In Proceedings of
the 39th ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 151–165,
2018.

[47] John K Ousterhout, Andrew R. Cherenson, Fred Douglis,
Michael N. Nelson, and Brent B. Welch. The sprite net-
work operating system. Computer, 21(2):23–36, 1988.

[48] David A Padua, Rudolf Eigenmann, Jay Hoeflinger, Paul
Petersen, Peng Tu, Stephen Weatherford, and Keith Fai-
gin. Polaris: A new-generation parallelizing compiler
for mpps. In In CSRD Rept. No. 1306. Univ. of Illinois
at Urbana-Champaign, 1993.

[49] Rob Pike, Dave Presotto, Ken Thompson, Howard
Trickey, et al. Plan 9 from Bell Labs. In Proceedings
of the summer 1990 UKUUG Conference, pages 1–9,
1990.

[50] Ian Piumarta and Fabio Riccardi. Optimizing direct
threaded code by selective inlining. In Proceedings of
the ACM SIGPLAN 1998 conference on Programming
language design and implementation, pages 291–300,
1998.

[51] Jon Puritz. Bio594: Using genomic techniques to ex-
amine the evolution of populations, 2019. Accessed:
2020-10-05.

[52] Deepti Raghavan, Sadjad Fouladi, Philip Levis, and
Matei Zaharia. POSH: A data-aware shell. In 2020
USENIX Annual Technical Conference (USENIX ATC
20), pages 617–631, 2020.

[53] Yann Régis-Gianas, Nicolas Jeannerod, and Ralf
Treinen. Morbig: A Static Parser for POSIX Shell. In
Software Language Engineering (SLE), Boston, United
States, November 2018.

[54] Martin C Rinard and Pedro C Diniz. Commutativity
analysis: A new analysis technique for parallelizing com-
pilers. ACM Transactions on Programming Languages
and Systems (TOPLAS), 19(6):942–991, 1997.

[55] Jiasi Shen, Martin Rinard, and Nikos Vasilakis. Auto-
matic synthesis of parallel unix commands and pipelines
with kumquat. corr abs/2012.15443 (2021). arXiv
preprint arXiv:2012.15443, 2021.

[56] Diomidis Spinellis and Marios Fragkoulis. Extending
unix pipelines to dags. IEEE Transactions on Comput-
ers, 66(9):1547–1561, 2017.

[57] Justin Talbot, Richard M. Yoo, and Christos Kozyrakis.
Phoenix++: Modular mapreduce for shared-memory sys-
tems. In Proceedings of the Second International Work-
shop on MapReduce and Its Applications, MapReduce
’11, page 9–16, New York, NY, USA, 2011. Association
for Computing Machinery.

[58] Ole Tange. Gnu parallel—the command-line power tool.
;login: The USENIX Magazine, 36(1):42–47, Feb 2011.

[59] Dave Taylor. Wicked Cool Shell Scripts: 101 Scripts for
Linux, Mac OS X, and Unix Systems. No Starch Press,
2004.

[60] Scott Thibault, Charles Consel, Julia L Lawall, Renaud
Marlet, and Gilles Muller. Static and dynamic program
compilation by interpreter specialization. Higher-Order
and Symbolic Computation, 13(3):161–178, 2000.

[61] Chen Tian, Min Feng, and Rajiv Gupta. Supporting
speculative parallelization in the presence of dynamic
data structures. In Proceedings of the 31st ACM SIG-
PLAN Conference on Programming Language Design
and Implementation, pages 62–73, 2010.

[62] Eleftheria Tsaliki and Diomidis Spinellis. The real statis-
tics of buses in Athens. https://bit.ly/3s112R5,
2021.

[63] Nikos Vasilakis, Konstantinos Kallas, Konstantinos
Mamouras, Achilles Benetopoulos, and Lazar Cvetković.
Pash: Light-touch data-parallel shell processing. In Pro-
ceedings of the Sixteenth European Conference on Com-
puter Systems, EuroSys ’21, page 49–66, New York, NY,
USA, 2021. Association for Computing Machinery.

[64] Nikos Vasilakis, Cristian-Alexandru Staicu, Grigoris
Ntousakis, Konstantinos Kallas, Ben Karel, André De-
Hon, and Michael Pradel. Preventing dynamic library
compromise on node.js via RWX-based privilege re-
duction. In Proceedings of the 2021 ACM SIGSAC
Conference on Computer and Communications Security,
CCS ’21, page 1821–1838, New York, NY, USA, 2021.
Association for Computing Machinery.

16

https://bit.ly/3s112R5

[65] Tom White. Hadoop: The Definitive Guide. O’Reilly
Media, Inc., 4th edition, 2015.

[66] Andy B Yoo, Morris A Jette, and Mark Grondona.
Slurm: Simple linux utility for resource management.
In Workshop on Job Scheduling Strategies for Parallel
Processing, pages 44–60. Springer, 2003.

[67] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das,
Ankur Dave, Justin Ma, Murphy McCauley, Michael J.
Franklin, Scott Shenker, and Ion Stoica. Resilient dis-
tributed datasets: A fault-tolerant abstraction for in-
memory cluster computing. In Proceedings of the 9th
USENIX Conference on Networked Systems Design and
Implementation, NSDI’12, pages 2–2, Berkeley, CA,
USA, 2012. USENIX Association.

A Artifact Appendix

The structure of this section mirrors the artifact evaluation
process. It is a shorter version of the README available in
the frozen osdi22-ae branch of PASH’s GitHub repository.
At a glance:

• Artifact available: Relevant links pointing to online re-
sources.

• Artifact functional: Documentation, completeness with re-
spect to the claims in paper, and exercisability.

• Results reproducible: Instructions for reproducing cor-
rectness (§7.1), performance (§7.2), and microbench-
mark (§7.3) results.

A.1 Artifact available
The implementation described in this paper has been incor-
porated into PASH, an MIT-licensed open-source software
available by the Linux Foundation. Below are some relevant
links:

• PASH is permanently hosted on the GitHub binpash orga-
nization.

• The PASH website is available at binpa.sh and
https://binpash.github.io/web/.

• PASH has joined the Linux Foundation and is available via
Dockerhub.

• PASH developers hang out on the pash-discuss mailing list
and discord.

PASH is developed actively, forms the foundation of further
research on the shell, and has received open-source contribu-
tions from developers outside the core development team.

A.2 Artifact functional
Fig. 1 gives an overview of the interaction between different
components and the correspondence of system components

to sections. Below we provide links to the source code imple-
menting them. Note that at the time of writing the terminology
in the code is somewhat different from the one presented in
the paper; we hope to align the code with the paper soon.

• Preprocessor (§3.1 and 3.2): The preprocessor uses the
parser (below) to instrument the script AST with calls to
the JIT Engine.

• Parsing library (§3.3): The parsing library contains Python
bindings for the dash parser and a complete unparser im-
plementation.

• JIT engine (§4): The JIT engine transitions between shell
and PaSh mode and interacts with the parallelizing compi-
lation server (below).

• Parallelizing compilation server (§5): The parallelizing
compilation server handles compilation requests for par-
allelizing regions of the script. The server contains the
following subcomponents: (i) the early expansion com-
ponent (§5.2); (ii) the dependency untangling component
(§5.3), enabled with --parallel_pipelines; and (iii) the
profile-driven configuration component (§5.4), enabled
with --profile-driven.

• Commutativity awareness (§6): It consists of (i) annotations
indicating whether a command is commutative (e.g., sort)
and (ii) dataflow nodes for orchestrating commutativity-
aware parallelization—e.g., c-split, c-wrap, c-strip, and
c-merge.

• The paper also claims that the core of the server has been
modeled and verified using SPIN. The modeling of the
dependency untangling algorithm in Promela (SPIN’s lan-
guage) can be found in algorithm.pml. The model captures
compilation requests of regions with non-deterministic
read/write dependencies, and ensures that no two regions
with dependencies are running together, while also ensuring
that both the server and the engine eventually terminate.

A.3 Results reproducible
The paper contains three classes of experiments, focusing on:

• correctness/compatibility, using the entire POSIX test suite
as well as additional scripts (§7.1).

• performance gains achieved by PASH-JIT’s paralleliza-
tion, evaluated using a variety of benchmarks and work-
loads (§7.2).

• PASH-JIT-internal overheads and associated optimiza-
tions (§7.3).

Links to these can be found in the relevant section of the
artifact README. The POSIX test suite is from the Open
Standards Group and thus cannot be shared outside the Docker
container on the machine shared with the AEC reviewers.
These tests run via CI on every commit on the PASH project.
Instructions to verify the dependency untangling algorithm
can be found here.

17

https://github.com/binpash/pash/tree/osdi22-ae/evaluation/osdi22-eval#artifact-available
https://github.com/binpash/pash/tree/osdi22-ae/evaluation/osdi22-eval#artifact-functional
https://github.com/binpash/pash/tree/osdi22-ae/evaluation/osdi22-eval#results-reproducible
https://github.com/binpash
https://binpa.sh/
https://binpash.github.io/web/
https://www.linuxfoundation.org/press-release/linux-foundation-to-host-the-pash-project-accelerating-shell-scripting-with-automated-parallelization-for-industrial-use-cases/
https://hub.docker.com/r/binpash/pash
https://groups.google.com/g/pash-discuss
https://discord.com/channels/947328962739187753
https://github.com/binpash/pash/blob/osdi22-ae/compiler/pash.py
https://github.com/binpash/pash/blob/osdi22-ae/compiler/pash_runtime.sh
https://github.com/binpash/pash/blob/osdi22-ae/compiler/parser/ceda/
https://github.com/binpash/pash/blob/osdi22-ae/compiler/pash_runtime.sh
https://github.com/binpash/pash/blob/osdi22-ae/compiler/pash_runtime_daemon.py
https://github.com/binpash/pash/blob/osdi22-ae/compiler/pash_runtime_daemon.py
https://github.com/binpash/pash/blob/osdi22-ae/compiler/pash_runtime_daemon.py
https://github.com/binpash/pash/blob/osdi22-ae/compiler/pash_runtime_daemon.py
https://github.com/binpash/pash/blob/osdi22-ae/compiler/expand.py
https://github.com/binpash/pash/blob/osdi22-ae/compiler/expand.py
https://github.com/binpash/pash/blob/osdi22-ae/compiler/pash_runtime_daemon.py#L172
https://github.com/binpash/pash/blob/osdi22-ae/annotations/sort.json#L18
https://github.com/binpash/pash/blob/osdi22-ae/runtime/r_split.c
https://github.com/binpash/pash/blob/osdi22-ae/runtime/r_wrap.c
https://github.com/binpash/pash/blob/osdi22-ae/runtime/r_unwrap.c
https://github.com/binpash/pash/blob/osdi22-ae/runtime/r_merge.c
https://github.com/binpash/pash/tree/osdi22-ae/evaluation/osdi22-eval/algorithm.pml
https://github.com/binpash/pash/tree/osdi22-ae/evaluation/osdi22-eval#results-reproducible
https://github.com/binpash/pash/tree/osdi22-ae/evaluation/osdi22-eval#additional-artifact-evaluation-spin-verification-of-dependency-untangling

	Introduction
	Example & Overview
	Interfacing With the Shell
	Dynamic Interposition
	Preprocessor
	Parsing Library

	The JIT Engine
	JIT Stages

	Parallelizing Compilation Server
	Command Annotations
	Early, Pure Expansion
	Dependency Untangling
	Profile-driven Compiler Configuration

	Commutativity Awareness
	Compilation: Dataflow Model
	Runtime: Commutativity Implementation

	Evaluation
	Correctness
	Performance
	Further Microbenchmarks

	Related Work
	Discussion & Conclusion
	Artifact Appendix
	Artifact available
	Artifact functional
	Results reproducible

