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Abstract
KOALA is a benchmark suite aimed at performance-oriented
research targeting the Unix and Linux shell. It combines a
systematic collection of diverse shell programs collected from
tasks found out in the wild, various real inputs to these pro-
grams facilitating small and large deployments, extensive
analysis and characterization aiding their understanding, and
additional infrastructure and tooling aimed at usability and
reproducibility in systems research. The KOALA benchmarks
perform a variety of common shell tasks; they combine all
major language features of the POSIX shell; they use a vari-
ety of POSIX, GNU Coreutils, and third-party components;
and they operate on inputs of varying size and composition—
available on both permanent archival storage and scalable
cloud storage. Applying KOALA to four systems aimed at
accelerating shell programs offers a broader perspective on
their trade-offs, generalizes their key results, and contributes
to a better understanding of these systems.

1 Introduction

Shell programming is as prevalent as ever. It consistently
ranks among the top ten programming languages, with a re-
cent popularity increase that dwarfs those of established lan-
guages such as C and Python [32]. These trends are mirrored
by recent academic activity on the shell aimed at accelerating
shell programs through parallelization [50, 72, 85], distribu-
tion [66, 75], and other forms of scale-out [34, 52, 54, 74].

Unfortunately, research on the shell is often held back by
the absence of an established benchmark suite—a systematic
collection of representative, diverse, and well-studied pro-
grams released as a reusable artifact. Consider the difficulties
that the Shark authors faced in evaluating the performance
benefits of its program transformations [14]:

To our knowledge, there does not exist a set of shell
language benchmarks. We present preliminary re-
sults on a handful of microbenchmarks that we
wrote ourselves.

The absence of such a suite decelerates research on the shell,
as authors waste time searching for new benchmarks. It also
eschews core scientific principles, such as replicability and
reproducibility, and hinders fair comparison, as different sys-
tems are compared against different baselines. It creates ad-
ditional and unnecessary work, as it forces researchers to
hand-roll their own benchmarks. Finally, it limits the impact
of otherwise sound and widely applicable techniques, due to
the lack of supporting evidence.
The KOALA benchmarks: This paper presents KOALA,
a benchmark suite aimed at performance-oriented research
targeting the Unix and Linux shell. KOALA combines a col-
lection of diverse, real-world, POSIX shell programs; realistic
inputs of varying size; extensive analysis and characteriza-
tion of these benchmarks; and additional infrastructure for
packaging, automation, and reporting aimed at reusability and
reproducibility. Its goal is to enable and support research on
shell-script performance optimization, as well as broader sys-
tems research within the context of the shell—e.g., CI/CD,
analytics, automation, etc. (see §2–3).

The KOALA benchmarks are sourced from multiple time
periods and perform a wide variety of tasks typically found
in the shell—including log analysis, data processing, system
administration, bioinformatics, software building, and contin-
uous integration and deployment. They combine all major
language features of the POSIX shell; use a variety of POSIX,
GNU Coreutils, and third-party commands; and operate on
inputs of varying size and composition—available via both
permanent archival storage and scalable cloud storage for
rapid access. Additional automation aims at setting up KOALA
across a variety of environments, confirming input and output
correctness, and reporting on several execution characteristics.
This additional automation is structured to maximize usability,
configurability, replicability, and reproducibility.

Extensive analysis of the KOALA suite reveals that it covers
the full range of features of the POSIX shell; represents these
features in proportions that align with real-world shell scripts;
captures a wide range of script sizes, complexities, and styles—
reflecting the shell’s diverse use cases; and exhibits a variety
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of runtime characteristics—from compute- to memory- to
I/O-intensive and short-lived to long-running computations.
Contributions: In summary, this paper contributes:

• A collection of benchmark programs: A systematic
and diverse collection of real-world programs represen-
tative of tasks commonly found in the context of the
shell and combining a variety of computational domains,
language features, and shell components.

• Permanent and scalable storage of varying inputs: A
set of real-world inputs stressing these benchmarks as
well as smaller inputs aimed at immediate results, both
stored on highly available and scalable cloud storage
backed up by permanently available archival storage.

• Tooling and automation for reuse: Additional infras-
tructure offering tooling, automation, and configurability
for executing these benchmarks on a variety of envi-
ronments, confirming input and output correctness, and
reporting on their observed characteristics.

• Characterization and implications: Extensive analysis
and characterization of these benchmark programs and
their inputs over several dimensions, and application of
the entire suite on four prior optimization systems and
tools targeting the shell.

Availability: The full set of benchmarks, their inputs, and
infrastructure for automation, containerization, and reporting
are all available as an MIT-licensed open-source repository.

https://kben.sh

2 Example & Motivation

KOALA targets the systematic evaluation of shell-related sys-
tems and tools—for example: Shark [14], a system for accel-
erating shell script execution using syntactic transformations;
GNU parallel [59], a command-line utility for parallelizing
shell pipelines; hS [52], a system speculatively re-ordering the
execution of shell programs; and PASH [50], a just-in-time
shell-script parallelization system.
Available options and the pains of characterization: The
authors of these systems currently have a limited set of options
for characterizing their performance benefits.

Microbenchmarks—small, isolated code fragments—are
necessary for zooming into key trade-offs, stressing particu-
lar behaviors, and highlighting system limits—and are often
handwritten to meet these goals [14, 48, 50, 75, 85]. Such
synthetic workloads differ significantly from ones seen in
practice. Microbenchmarks don’t admit generalizable conclu-
sions or holistic evaluations of complex systems.

Standards tests [33,78] offer a thorough evaluation of shell
behavior—e.g., that pipelines take precedence over redirec-
tions in their constituent commands. The POSIX test suite

is one example [78]. They focus on behavioral equivalence
against a specification, not judging the performance of real
workloads. Lacking the size and features of workloads seen
in practice, they offer little insight into how optimization sys-
tems affect real programs.

Open-source code repositories are ripe targets for longi-
tudinal studies—e.g., understanding a community’s use of
certain shell features [22, 71]. Leaving scraping and pars-
ing challenges aside, these programs typically lack inputs,
setup scripts, explicit dependency declaration, and portable
constructs—often consisting of noisy, low-quality, or even
incomplete programs. Ad hoc collections are also not well
understood by the community or the authors themselves, who
risk accidentally skewing results due to these challenges.

User or developer study corpora are primarily focused on
understanding developer patterns [21, 69]. Due to time con-
straints and the need to control for confounding factors, user
study corpora broadly optimize for program characteristics
that do not necessarily support generalization to the diversity
of size, shape, and complexity of real-world programs.

Requirements and goals: The aforementioned options avail-
able to the authors of systems such as Shark, parallel, hS,
and PASH are ill-suited for performance characterization.

For a set of benchmarks to support research on the shell
and related systems, it needs to meet the following criteria:
(1) real-world programs performing real computations on real
inputs; (2) diversity in workloads, domains, shell features, and
commands used; (3) automated setup, analysis, validation,
and reporting; (4) community-wide understanding through
extensive analysis and characterization; (5) permanent and
scalable availability, allowing anyone to download and use
them. KOALA meets all of these criteria.
Using KOALA: The authors of these systems enjoy a variety
of options for downloading and setting up KOALA:

curl -s up.kben.sh | sh &&
./koala/main.sh --min --bare

This option sets up platform-specific dependencies, then
downloads or generates a minimal set of inputs (§3). It then
executes the full suite using its default parameters, such as the
default shell interpreter—except for (1) --min, which uses
minimal inputs (just enough to exercise the entire suite, all
output validators, and its reporting infrastructure), and (2)
--bare, which executes in the current environment instead of
a Docker container launched afresh for the execution of each
benchmark. KOALA then confirms output correctness, guard-
ing against failures and cross-run interference, and generates
a report of the entire execution. On a fresh AWS environment,
on a t3.large instance, such a minimal bare-metal setup,
execution, and reporting completes in about 20 minutes.

Omitting the --bare launches KOALA in a Docker con-
tainer, avoiding cross-run contamination and permanent ef-
fects on the host environment beyond result creation (e.g.,
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dependency installation), and executes KOALA on full-sized
inputs, revealing how a system under evaluation is affected by
realistic workloads. KOALA aggregates the results over mul-
tiple runs (five by default), increasing statistical confidence,
and reports the results of the execution. Using the default pa-
rameters in the same AWS environment and full inputs bumps
execution to about 24 hours.
An example benchmark: To understand how Shark,
parallel, hS, and PASH would benefit from KOALA, con-
sider zooming into a single benchmark. Fig. 1 provides a
real-world program (simplified for this discussion) iterating
over start and end years to compute maximum, minimum,
and average temperatures from a large dataset (c.f., Tab. 1).
The body of the loop consists of one pipeline per metric, each
using cat to read the input data and grep to filter out sentinel
values, then applying operation-specific computations. The
parallel and Shark authors would need to apply manual
rewrites for their systems; the rest of the authors could point
KOALA_SHELL to their system (§4). They would then execute
this benchmark on small (but, contrary to min, real) inputs:

./main.sh --small weather

Each of these systems accelerates weather differently.
Shark eliminates cats at the start of the pipelines by moving
inputs to cut, and executes the three pipelines in parallel.
GNU parallel can be applied to both the outer loop and the
three pipelines; the user would need to choose which parts
of the script to parallelize. hS runs commands speculatively,
unrolling loop iterations to execute in parallel. And PASH
parallelizes each pipeline stage. The four systems exploit dif-
ferent opportunities, optimizing different shell constructs and
leaving different parts of each script unchanged.

On commodity infrastructure (§7), speedups average 2.3×
for Shark, 2.7× for parallel, 1.64× for hS, and 1.08× for
PASH. Most importantly, in contrast to similar numbers poten-
tially collected over microbenchmarks, the composition and
complexity of these benchmarks demonstrate the anticipated
benefits—as well as potential limitations—of these systems
in real-world settings.

3 KOALA Design Overview

Tab. 1 summarizes KOALA’s full set of benchmarks and
their characteristics. KOALA offers 126 programs, analo-
gous to but diverse from the earlier weather example (§2),
grouped into sets that share features, sources, or inputs. This
section focuses on the first three sets of columns: Identi-
fication characteristics (Col. 1) list each benchmark set’s
name and (a subset of) the programs it contains; Descrip-
tions (Cols. 2–4) summarize application domains (D), the
number of programs in the set (#.sh), and the total lines of
code (LoC); and Inputs (Col. 5) summarize the size of each
input. Later sections discuss other characteristics.

#!/bin/bash
d="./data/temperatures";
for y in $(seq $start $end); do

cat $d/$y | cut -c 89-92 | grep -v 999 |
sort -rn | head -n1 > max.$y

cat $d/$y | cut -c 89-92 | grep -v 999 |
sort -n | head -n1 > min.$y

cat $d/$y | cut -c 89-92 | grep -v 999 |
awk "{t += \$1; i++} END {print t/i}" > avg.$y

done

Fig. 1: Temperature analytics script. The script calculates temper-
ature max, min, and avg across input files.

Inputs: Before discussing specific programs and inputs, it is
worth outlining the general structure of inputs, its goals, and
the infrastructure deployed to ensure scalable and permanent
storage. These are guided by the experience of several users [9,
29, 72, 85] over multiple years.

KOALA comes with three input sizes for each of its bench-
marks. Full inputs (--full) are either the original inputs pro-
grams were designed to operate on (e.g., weather, covid)
or, for older programs, realistic large-scale inputs on which
these programs would operate today (e.g., oneliners,
unixfun). Small inputs (--small) are subsets of the full
inputs useful for smaller-scale characterizations. They range
between 0.1–30% of the original input (with some exceptions,
noted below) and are carefully truncated to still be meaningful
and semantically valid—for example, genomics pipelines still
operate on valid genome sequences seen in practice, rather
than arbitrary strings terminated at arbitrary points. Minimal
inputs (--min) are synthetic data created to quickly confirm
correct setup and facilitate further automated configuration.
These inputs aim at near-immediate results and, depending
on the characteristics of the system and environment, are
either downloaded or generated. Downloading, detailed be-
low, fetches inputs from cloud servers when high-bandwidth
connectivity is available; generation operates repeatedly on
benchmark-specific seeds, useful for environments with lim-
ited connectivity.

To meet key performance and availability requirements, in-
puts are hosted on infrastructure that combines two replication
tiers—in addition to their source, e.g., NOAA [2] or Wikipedia
dumps [87]. The primary tier operates as KOALA’s default
configuration and stores all inputs on a replicated storage clus-
ter managed by Brown University. The cluster is connected
via 1Gb/s switched Ethernet network with access to Inter-
net1 and Internet2 via Brown’s fiber-optic backbone, aimed
at high (but not permanent) availability—ensuring that inputs
are available for concurrent users of the KOALA benchmarks.
Additionally, infrastructure managed by Stevens Institute of
Technology and UCLA hosts replicas of all inputs to offer
additional availability.

The secondary tier ensures permanently available archival
storage. Inputs (and the programs using them) are made avail-
able on Zenodo servers, split appropriately to comply with



Tab. 1: KOALA benchmark summary. The table summarizes all benchmarks in the KOALA suite. Col. 1: Identification characteristics, listing
each benchmark set’s name and (a subset of) the programs it contains. Cols. 2–4: Descriptions, summarizing application domains (D), the
number of programs in the set (#.sh), and the total lines of code (LoC). Col. 5: Inputs, summarizing the size each benchmark’s inputs. Cols. 6–7:
Static features, summarizing syntactic characteristics—i.e., the number of shell constructs (#Cons) and the number of distinct commands
(#Cmd). Cols. 8–11: Dynamic features, summarizing the execution characteristics—i.e., time spent on shell evaluation (tS), time spent on
commands (tC), memory consumption (Mem), and total input-output (I/O). Cols. 12–13: System, summarizing the number of system calls
(#SC) and open file descriptors (#FD). Col. 14: Source, containing a reference to the source of the benchmark.

Benchmark/Script
Surface Inputs Syntax Dynamic System

SourceD #.sh LoC Small Full #Cons #Cmd tS tC Mem I/O #SC #FD

analytics SA/DA 4 53 1.94GB 78.9GB 10 21 10ms 84s 334MB 23.0GB 117.3m 84 [6, 66, 74]
nginx.sh 19 10 13 ~0 1s 10.3MB 1.79GB
. . .

bio DA/B 4 823 24.3GB 114GB 17 66 51s 6720s 25.1GB 352GB 35.3m 79 [17, 38, 41]
data.sh 226 13 44 46s 3521s 25.1GB 287GB
. . .

ci-cd CI/BS 21 2592 N/A 20 134 30ms 128s 461MB 2.35GB 3.5m 885 [18, 64]
. . .

covid DA/DE 5 53 3.34GB 5.08GB 5 6 ~0 67s 1011MB 80.6GB 14.3m 150 [81]
1.sh 9 5 6 ~0 12s 13.2MB 17.5GB
. . .

file-mod AN/MI 5 41 4.35GB 39.2GB 11 10 99ms 235s 164MB 13.9GB 1.5m 61 [66, 71, 74]
encrypt.sh 11 10 6 ~0 2s 2.82MB 5.10GB
img-conv.sh 11 11 6 99ms 170s 145MB 3.83GB
. . .

inference ML/DA 3 61 3.85GB 11.7GB 15 27 40ms 1586s 7.16GB 83.7GB 37.9m 81 [27, 43]
. . .

ml ML/DA 1 47 4.71GB 15.0GB 7 1 ~0 1156s 7.87GB 41.6GB 14.9m 10 [63]
nlp TP/ML 23 303 3k bks 115.9k bks 10 19 15s 851s 9.62MB 272GB 178.6m 526 [45]
bigrams.sh 19 10 16 710ms 50s 7.93MB 22.5GB
. . .

oneliners AN/TP 13 119 202MB 13.5GB 10 24 60ms 14s 199MB 3.77GB 4.5m 288
spell.sh 11 6 7 ~0 1s 8.38MB 523MB [12]
top-n.sh 2 5 6 ~0 960ms 8.25MB 408MB [13]
uniq-ips.sh 2 4 3 ~0 60ms 8.15MB 54.2MB [55]
. . . [67, 76]

pkg CI/AN 2 43 110 pkgs 2.0k pkgs 16 22 5s 201s 572MB 15.3GB 35.2m 132 [10, 86]
pacaur.sh 29 14 19 5s 81s 490MB 14.6GB
proginf.sh 14 11 6 10ms 120s 572MB 709MB

repl SA/MI 3 586 N/A 20 55 ~0 24s 197MB 1.21GB 5.6m 79 [39, 66]
. . .

unixfun MI/TP 36 70 599MB 59.1GB 4 12 ~0 5s 9.80MB 5.71GB 944.0k 733 [62]
1.sh 2 3 2 ~0 50ms 680KB 108MB
2.sh 2 3 3 ~0 260ms 7.51MB 209MB
. . .

weather DA/DE 2 74 893MB 146GB 11 20 260ms 958s 94.2MB 39.1GB 56.7m 50 [80]
. . .

web-search MI/TP 4 34 833MB 8.61GB 14 30 11s 1343s 1.32GB 17.1GB 112.6m 174 [16]
. . .

Min 1 34 1.05MB 44.9MB 4 1 0 5.4 9.62MB 1.21GB 944.0k 10
Mean 9 349.9 3.66GB 38.0GB 12.1 31.9 6.1 955.7 3.17GB 67.9GB 44.2m 238
Median 4 65.5 1.54GB 13.5GB 11 21.5 0.1 218.2 398MB 20.1GB 25.0m 108
Max 36 2592 24.3GB 146GB 20 134 52 6720.9 25.1GB 352GB 178.6m 885

Zenodo’s 50GB limit. While it does not offer the same band-
width as the primary tier, it forms a transition path if input

reconstruction becomes necessary—in the unlikely case that
all university replicas become permanently unavailable.



Computational domains: KOALA draws from several
domains, representing a broad range of computations—
including both classic workloads typical of shell programs
and modern workloads found pervasively today.

Data analytics programs (DA, 11 programs across three
sets) extract, transform, and summarize quantitative datasets
such as temperature records, public transit data, and genomic
information. System administration programs (SA, seven pro-
grams across two sets) include typical system setup and main-
tenance tasks or system log manipulation. Continuous inte-
gration and deployment workflows (CI, 23 programs across
two sets) include standalone shell programs or ones that auto-
mate software builds, program analysis, and software testing.
Machine-learning programs (ML, four programs across two
sets) include scripts either implementing learning tasks or
gluing together third-party components in modeling pipelines.
One-off automation scripts (AN, 18 programs across two
sets) automate various operations such as file encryption, me-
dia conversion and one-off tasks such as spell-checking and
content filtering. Other miscellaneous benchmarks (MI, 40
programs across two sets) consist of scripts that do not belong
to any particular domain and perform a variety of tasks such
as arbitrary text transformations, and web crawling.

Across and orthogonal to these domains, KOALA combines
several diverse styles of computations and tasks (after the
slash in column D). For example, two data-extraction sets
(DE) summarize information from large data sources; four
text-processing sets (TP) manipulate text in multi-stage trans-
formation pipelines; and three automation sets (AN) revolve
around sequencing and managing task execution.
Benchmark programs: KOALA consists of fourteen sets of
programs, presented in alphabetical order.

The analytics set contains four programs that analyze
log files to extract key events [66, 74]. Operations include
filtering and summarization. They operate on 78.9GB of line-
oriented logs—including TCP traffic, Nginx access logs, and
ZMap scan data—all collected from real network traces, as
well as logs from a ray-tracing system [23, 26, 70, 82]. The
small inputs (1.94GB) include truncated versions of the same
log and packet-capture files.

The bio set consists of four programs for processing ge-
nomic and transcriptomic data. One performs population ge-
nomics analysis [17, 41], and the other three implement key
stages of the TERA-Seq platform [38] for processing and
aligning RNA sequences. Inputs include a BAM genome se-
quencing file [79] and auxiliary data such as gene annotations,
totaling 114GB. The scripts exhibit fan-out/fan-in structures,
offer opportunities for code de-duplication, implement work-
queue-like parallelism, and operate on large files. The small
inputs (24.3GB) omit much of the optional auxiliary data.

The ci-cd set contains 21 build-related programs, includ-
ing scripts for building eight applications—such as Lua, Mem-
cached, Redis, and SQLite [18]—as well as the makeself
utility, which creates self-extracting archives [64]. These pro-

grams are typically used in continuous integration and de-
ployment pipelines and feature multiple dependencies, but
typically have small—if any—data inputs, thus using identi-
cal full and small inputs. The makeself script executes the
program’s test suite and requires no inputs.

The covid set contains five programs that calculate statis-
tics about the public transit activity of a large city during the
COVID-19 pandemic [81]. These programs come in two ver-
sions, amenable to different optimization strategies: a version
that uses typical Unix staples such as cut , sort , and unix ;
and one written as a monolithic awk program. They operate
on 5.08GB of CSV data about transit vehicle activity, and the
small inputs cover a 3.34GB subset.

The file-mod set consists of five programs that auto-
mate file-level transformations, including compression, en-
cryption, and format conversion. Two of the programs operate
on 34.7GB of packet capture files collected from publicly
available datasets [58], compressing and encrypting them us-
ing openssl [71]. The other three perform media format
conversions [66, 74], reading from and writing to the filesys-
tem in tight loops that process hundreds of image and audio
files (4.4GB). The small version of the benchmark uses a
reduced dataset with 4.35GB total of text and media files.

The inference set contains three programs that per-
form inference tasks on media files using large foundational
models [31,46,90]. These include image captioning [43], mu-
sic playlist generation via embedding interpolation [27], and
sequential segmentation and classification of hieroglyphic
images using SAM [46] and a custom classifier. These bench-
marks process 9.3GB of image and audio data. The deep-
learning models use total 2.4GB in size. The benchmarks
perform model serving using external run-times [4, 61] in-
terfacing with them via custom wrappers [73]. The small
version operates on a subset (3.85GB) of the original images
and music using the same back-end models.

The ml set consist of a typical of machine-learning work-
load comprising multiple stages written using the Scikit-Learn
library [63]. It is a decomposition of a monolithic Python pro-
gram into a series of scripts operating on 15GB of inputs and
performing distinct steps for data ingestion, learning, infer-
ence, classification, and evaluation. The small version of this
benchmark uses a subset of the same input (4.71GB).

The nlp set contains 23 scripts implementing natural lan-
guage processing techniques, drawn from “Unix for Poets”
NLP tutorial [45]. Most scripts consist of 1–2 lines, and can
be combined in sequential operation. The input dataset con-
tains over 115,000 ASCII books from Project Gutenberg [57],
and and 3,000 books (1.42GB) for the small inputs.

The oneliners set contains 11 shell pipelines drawn
from various sources across the academic and popular lit-
erature [6, 12, 13, 45, 55, 67, 76]. Some of these programs
are classics in the Unix literature [12, 13, 67] and high-
light the Unix philosophy, embodied by the shell; others are
more recent [6, 55, 76], applying the same principles to mod-



ern workloads. They make extensive and, at times, complex
use of streaming constructs, applying maps, filters, reduc-
tions, stream duplication, and window operators. Their inputs
are shared between script subsets and combine books from
Project Gutenberg, commands available in PATH, and pack-
ages from the apt repositories (13.5GB full, 202MB small).

The pkg set consists of two programs: one automates
the installation of packages from the Arch User Repository
(AUR) [1], and the other applies a static analysis tool to extract
permissions from the node package manager (npm) reposi-
tory [3,86]. Its input consists of two lists—195 AUR package
names and 1,768 npm package names. The benchmark down-
loads, builds, and installs the AUR packages in a loop, and
analyzes the npm packages to infer their permissions. The
small version of this benchmark includes the first 10 and 100
packages from each list.

The repl set contains two standalone programs. The first
performs auditing for security vulnerabilities and misconfig-
urations. The second replays a development workflow on a
large Git repository. Both scripts include non-trivial filesystem
access patterns, with the second being metadata heavy. Nei-
ther script requires external input at runtime (N/A in Tab. 1).

The unixfun set contains 36 programs solving the Bell
Labs 50-year Unix anniversary challenge [62]. They mimic
classic Unix text-processing computations, often short ones
that eliminate the vast majority of the input using a head or
tail . They operate on inflated inputs (59.1GB) created by
duplicating the original inputs (599MB), while maintaining
the expected structure.

The weather set consists of two program phases calcu-
lating statistics on historical temperature data from a Hadoop
book [80], with the second one performing some additional
analysis and recreating Edward Tuft’s famous weather di-
agram [24]. Some of these phases correspond to MapRe-
duce and Spark computations exemplifying large-scale data
processing—not part of KOALA, but useful for comparisons
of shell-acceleration systems targeting similar or compara-
ble scalability goals. These phases operate on large inputs
(146GB) collected from NOAA [2] spanning multiple years.
The small version of these inputs corresponds to a subset of
temperatures from the year 2015 (893MB).

The web-search set contains several programs from a
course on distributed systems, implementing web crawl, in-
dex, and query. It is implemented as a POSIX-shell streaming
program, using complex streaming operators—including du-
plication, shifting, windows, and dataflow cycles. The input
dataset consists of a Wikipedia snapshot (8.61GB), or a subset
for the small version (833MB).
Principal component analysis: Before diving into various
static and dynamic characteristics of the KOALA suite, it is
worth getting a sense of its high-level diversity characteristics.

Fig. 2 shows this diversity using Principal Component Anal-
ysis (PCA) [5] on two distinct representations of each bench-
mark detailed below. PCA maps high-dimensional data to a
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Fig. 2: Principal component analysis results. Top: PCA plot re-
sulting from the static and dynamic analysis of each benchmark.
Bottom: PCA plot resulting from embedding calculation of KOALA

source code using a pre-trained model [60].

lower-dimensional space that preserves structural differences
for easier comparison and visualization. It computes weights
for each of the n original dimensions to create k (where k < n)
new and uncorrelated composite dimensions that are each
linear combinations of the original ones.

The top row of Fig. 2 visualizes benchmarks projected on
this reduced space based on their static and dynamic charac-
teristics (§5–6). The spread of the benchmarks across the prin-
ciple components suggests that the suite covers a broad and
non-overlapping range of syntactic and behavioral profiles.
The bottom row of Fig. 2 visualizes each benchmark on the
space based on dense vector representations that capture high-
level program structure and logic. These embeddings, gener-
ated using OpenAI’s text-embedding-3-large model [60],
capture information targeting diversity at the semantic and
syntactic level [7, 83]. Well-distributed across the projected
space, the results also suggest substantial diversity in both
syntax and semantics.

4 Infrastructure and Configuration

Each KOALA benchmark set adheres to a specification that
defines installation dependencies, input configuration, bench-
mark execution, and validation of the final results. This speci-
fication, shown in Fig. 3, includes five infrastructure scripts:
(1) install.sh sets up dependencies required by the bench-
mark; (2) fetch.sh downloads (or generates, §3) and, if nec-



sample-benchmark
├── scripts      # Benchmark scripts
│   ├── a.sh
│   ├── b.sh
│   └── ...sh
├── install.sh   # Dependency installation
├── fetch.sh     # Input data download/preparation
├── execute.sh   # Script execution
├── validate.sh  # Hash generation & verification
└── clean.sh     # Input and output file cleanup

Fig. 3: Benchmark structure. Each benchmark includes five sup-
port scripts (e.g., install, clean) and a scripts/ directory con-
taining the source code of each benchmark. A top-level main driver
executes all support scripts for one or all benchmarks.

essary, pre-processes inputs, accepting an argument that speci-
fies their size; (3) execute.sh executes benchmark programs,
collecting basic information such as execution time and re-
sources; and (4) validate.sh confirms the correctness of the
benchmark’s output by hashing the output of each script and
comparing it to a known-good hash. Finally, (5) clean.sh
removes inputs, outputs, and temporary files created during
the benchmark’s execution. These scripts avoid redundant
work—e.g., dependency installation or input generation are
skipped if possible, except if forced (-f).

KOALA also includes a top-level driver (main.sh) that
executes the five scripts in sequence for any benchmark. The
driver checks several configuration parameters, accepted as
flags or environment variables, which it then passes to the
rest of the scripts. For example, a KOALA_SHELL parameter
configures the shell interpreter executing the suite—e.g., bash,
zsh, or a path to an executable, and defaulting to sh.

KOALA’s structure aims to facilitate quick collection of
preliminary results, not exhaustive coverage of all possible
needs. To accommodate a wide range of systems, it is kept
minimal—inviting users to modify it to fit their needs.
Containerization: KOALA provides optional infrastructure
for running benchmarks in an isolated environment. It in-
cludes a Dockerfile that builds a Debian-based container,
installs essential dependencies such as git and sudo, and
fetches the suite. A volume is shared with the host system,
simplifying access to inputs and outputs.

It also provides support for dynamically generating con-
tainer images tailored to each benchmark. These images are
self-contained and ephemeral: their Dockerfile contains a CMD
command executing all infrastructure scripts via main.sh.

To avoid problems with permission changes or system-wide
modifications, KOALA does not require elevated privileges
(except for fetch.sh which installs software dependencies)
and avoids privileged commands such as sudo and setuid.
Integration effort: The effort required to add a new bench-
mark to KOALA depends on its complexity, input size, and
correctness constraints. It typically involves five steps: (1)
identifying and encoding dependencies in install.sh; (2)
preparing input datasets in multiple sizes—full, small, and

min—via fetch.sh; (3) including scripts for automated exe-
cution in execute.sh; (4) defining output validation logic in
validate.sh; and (5) specifying cleanup steps in clean.sh.

Benchmark ∼ T (h)

analytics 40
bio 60
ci-cd 75
covid 65
file-mod 60
ml 30
inference 35
nlp 10
oneliners 10
pkg 30
repl 25
unixfun 10
weather 30
web-search 40

Total 520

Integrating the current set of
benchmarks ranged between 10–80
person-hours per benchmark (Tab. on
the right). Small and self-contained
benchmarks such as oneliners,
unixfun, and nlp each took
about 10–12 hours; more complex
or data-heavy benchmarks such as
file-mod, bio, and ci-cd, and
took about 60–80 hours due to their
size, dependencies, and nuanced
output correctness. Most of our time
constructing this release of KOALA
was spent in building new logic and
adapting datasets, with a significant
portion devoted to testing and confirming correctness under
various environments and configurations.

5 Syntactic Characterization and Analysis

Contrary to single-language environments, the shell often
combines components in multiple languages. KOALA thus
distinguishes between the characteristics of (and resources
spent on, see §6) the shell portion of each benchmark, versus
those of components called into by the shell and which often
implement the core of a computation (Tab. 1, cols. 6–7).
Methodology: We use libdash [53] to parse and analyze
both portions using SMOOSH’s abstract syntax definition for
the POSIX shell [33]: for the shell portion, we count the total
occurrences of every AST node; for the command portion,
we analyze only AST nodes counting commands, built-ins,
and functions—yielding conservative results that exclude dy-
namic constructs (e.g., $CMD arg ) but avoid conflating static
structure with repeated runtime executions.
Language features: Fig. 4 summarizes the occurrences of
each construct across KOALA. Each cell shows the number of
times a syntactic construct (vertical axis) occurs in a bench-
mark (horizontal axis). AST nodes that overlap with more
specific nodes or that do not correspond to linguistic features
(e.g., escaped characters) are excluded. Overall, KOALA em-
ploys all the syntactic constructs of the POSIX shell, in varied
combinations that reflect its various styles of computation.

KOALA covers several key shell characteristics worth men-
tioning. Most sets employ pipelines, shell constructs of the
form a | b that pass the output of one command ( a ) as
input to the next ( b ). Pipelines are an important shell fea-
ture, optimized by several data-parallel systems. Two sets
use operators & and wait for explicit parallelism—a fea-
ture relevant to performance-oriented shell systems. Two sets
use sub-shells, e.g., (echo hi) , and several sets use control
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Fig. 4: Syntactic characteristics. Cells show the frequency of the
syntactic construct (y-axis) in a benchmark (x-axis), up to five oc-
currences to maintain clarity of absences (zero counts). Stars denote
more than five occurrences.

constructs such as loops and conditionals. Several sets use
function definitions, and nearly all use variables, assignments,
and stream or file redirections; other kinds of redirections
occur less frequently. Many sets use command substitution,
e.g., echo hi $(whoami) .

Fig. 4 also highlights a key KOALA characteristic: no two
benchmarks exhibit the same distribution of syntactic con-
structs. KOALA represents well the shell’s most interesting
features—e.g., external command invocations, pipelines, the
background operator, subshells, expansion, and redirection.
In combination, these features are essential in making the
shell the uniquely powerful and complex platform that it is.
Different styles of scripts employ these features in different
combinations and proportions—and KOALA aims to capture
this variation. The proportion of these features align with
shell usage studies [22], indicating that the distribution of
KOALA’s shell features corresponds to current trends and is
representative of the programs found in the real world.
Component features: Fig. 5 shows the frequency of all
KOALA commands occurring at least 30 times, excluding
benchmark-specific functions and binaries. KOALA con-
tains many of the most common commands found in the
wild: echo tops the list with 441 occurrences; cat , grep ,
sort , and tr count about half of that; other commands ex-
hibit lower frequencies. These results broadly match results
from studies of commands in the wild [22], except for path-
manipulation commands as most KOALA paths are static.

0 100 200 300 400
Count

echo
cat

grep
sort

tr
sed
awk
cut

[
mkdir

rm
test
shift

head
uniq
exit

return
dirname
mktemp

wait
cd

Type Count
coreutil 54

standard linux tool 39
shell builtin 20

custom binary or function 135
total 248

Fig. 5: Command occurrences. The chart shows the frequency
of all KOALA commands occurring at least 30 times. The table
categorizes the unique commands counted across the entire suite.

The table also groups KOALA’s distinct commands into
four classes. Most common are GNU Coreutils (e.g., echo
and cat ), shell built-ins (e.g., cd and return ), and stan-
dard linux tools (e.g., grep , sed , and awk ). While the first
three classes make up KOALA’s vast majority of commands,
in terms of frequency, custom binaries and functions account
for 134 commands, or 54% of the unique command set.

6 Dynamic Characterization and Analysis

Beyond its syntactic diversity, KOALA also exhibits diverse
dynamic characteristics. Exploring this diversity involves ex-
ecuting benchmarks to extract dynamic features such as CPU
time, memory consumption, IO characteristics, and interac-
tion with the broader environment (Tab. 1’s cols. 8–13).
Methodology: To extract these features, we collect several
metrics while executing benchmarks on a machine with 32GB
RAM, an 8-core 3.80GHz Ryzen 7 9700X CPU utilizing
hyper-threading, and a 1TB NVMe SSD. The shell interpreter
is set as bash --posix. We measure CPU time and IO by
probing /proc/<pid>/{stat,io} after the target process ex-
its; and wall-clock time and memory use by calling Python’s
time.perf_counter and psutil at 0.01-second intervals.
We aggregate results by set by summing timing and IO statis-
tics for each program in that set. We take the maximum high-
water-mark memory usage to compute a single set of results
per benchmark.
Overview: Fig. 6 presents results both overall and with
respect to input sizes. The plots form two coarse groups (x-
axis is benchmarks, always): (1) the top two plots (left and
right) show total execution time—left is the ratio of CPU time
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Fig. 6: Dynamic characteristics. The top two plots contextualize the rest: (left) ratio of CPU time to wall-clock time; (right) ratio of IO time
to wall-clock time. The bottom three plots (rows 2, 3, 4) show CPU time, Memory, and IO: (left) absolute; (right) normalized over benchmark
input. All y-axes except top left are symmetric log scale: values between 0 and the first tick are linearly scaled, and the next are logarithmic.

to wall-clock time, right is the total IO per second of wall-
clock; (2) the next six plots (rows 2, 3, 4), show CPU time,
high-water-mark memory, and IO—left is absolute, right is
per input byte.

Absolute characteristics: As these characteristics vary by
orders of magnitude, these plots use a symmetric log scale:
values between zero and the first tick are linearly scaled, while
the rest are logarithmic. The CPU-time plot (Fig. 6, row 2, left)
shows that the benchmark runtime varies from seconds (e.g.,
unixfun) to hours (e.g., bio). CPU time is split between
time spent in the shell versus commands: here, too, KOALA
demonstrates significant diversity—ranging from a mix of
shell execution and commands (e.g., nlp) to command-
dominated workloads (e.g., bio and inference).

Similarly, the memory plot (Fig. 6, row 3, left) shows the
diversity of memory-intensiveness, varying between 668KB
(e.g., unixfun) and around 10GB (e.g., bio, inference,
and ml). Likewise, the IO plot (row 4, left) shows that KOALA

exhibits varying degrees of IO-heaviness, ranging from just
75.9MB of IO (e.g., ci-cd) to 336GB (e.g., bio).

Tab. 1’s last few rows (pg. 4) offer additional context: CPU
time, memory consumption, and IO range respectively be-
tween 2.1–6544.8s (shown separately for the shell and com-
mands, average: 934.1s), 6.1MB–25.1GB (average: 3.14GB),
and 85.7MB–336GB (average: 66.6GB).

Normalized characteristics: Normalized plots (rows 2–4,
right) offer a sense of these characteristics normalized by each
benchmark’s input size, important due to their correlation with
input size, which varies widely (0–146GB). This normaliza-
tion is noticeable with bio and covid: these benchmarks
have substantial absolute CPU times (on left), but their nor-
malized CPU times (on right) are moderate—reflecting the
fact that they are long-running mainly due to the volume of
data they process, not the intensity of their computations. On
the other hand, pkg is computationally intense, despite its
middling absolute execution time. These characteristics do



not apply to benchmarks with no inputs (e.g., ci-cd and
repl), which have no bars in the normalized plots.

Overall, across the three dimensions (CPU, row 2; memory,
row 3; and IO, row 4), KOALA enjoys significant diversity—
multiple metrics vary by several orders of magnitude.

7 Applying KOALA to Optimization Systems

This section summarizes the process and results of applying
four optimization systems (§2) on the KOALA benchmarks:
Shark [14], GNU parallel [59], hS [52], and PASH [85]
achieve performance gains on different subsets of KOALA.
Hardware & software setup: All experiments in this sec-
tion were executed on an AWS c6i.4xlarge instance with
32GB of RAM and a 16-core 3.5 GHz CPU running Ubuntu
24.04.1 and bash v5.2.21 with -posix enabled.
Adoption effort: The four systems require different effort
to use KOALA (see Appendix II), depending on their needs
(e.g., automation, inputs), characteristics, and goals (§2). GNU
parallel required modifying benchmarks to export paral-
lelizable pipelines and for -loops as functions passed to
parallel. Shark required similar transformations guided by
its optimizations. PASH and hS, both operating as drop-in
shell replacements, could simply set KOALA_SHELL.

7.1 Shark
To understand whether KOALA aids the characterization of
Shark [14], we manually apply its transformations as de-
scribed in the Shark paper across several KOALA programs.
Methodology: The Shark paper [14] describes several po-
tential syntactic transformations, which we apply manually
across all KOALA benchmarks. We then execute the original
and optimized versions to characterize the performance of the
modified benchmarks.
Results: Shark achieves significant performance gains
across KOALA, ranging between 1.01–13.43×, depending
on benchmark characteristics. Benchmarks that involve triv-
ially parallelizable loop iterations see major speedups—e.g.,
Shark improves the nlp and weather benchmarks by
6.46× and 13.43×, respectively. Scripts with sequential oper-
ations, such as those found in ci-cd, exhibit less pronounced
improvements—at times only marginal gains of 1.16×.

Shark accelerates most benchmarks, though benchmarks
with highly interdependent operations that already use
pipelines see more limited gains. For example, covid,
oneliners, bio, and unixfun offer less opportunities
for Shark-style optimizations, which result in speedups be-
tween 1.01–1.06×. The web-index benchmark sees the
least improvement (1.01×) as it already runs the three n-gram
calculations in parallel, making Shark obsolete. Shark’s opti-
mizations centered around command invocation, do not result
in significant performance benefits, speeding up scripts where
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Fig. 7: Shark, GNU parallel, hS, and PASH speedups. Rela-
tive average speedup on the KOALA benchmarks. Baseline is the
original runtime in a single-threaded bash shell with the --posix
flag enabled.

only such optimization opportunities were present (e.g., web-
search) by 1.01× on average. In contrast, optimizations that
eliminate temporary files used for intermediate storage can
offer more substantial speedups, but they also introduce signif-
icant complexity, as pipes require more careful coordination
between producers and consumers.
Takeaway: KOALA confirms that Shark’s optimizations are
effective in scripts that involve operations on multiple in-
puts and independent commands, and less effective for I/O-
heavy scripts or scripts that are not easily parallelizable. Its
parallelization and pipeline optimizations offer significant
speedups, up to 13.43×.

7.2 GNU parallel

To understand whether KOALA aids the characterization of
GNU parallel [59], we apply it on several KOALA programs
focusing on natural candidates for such parallel execution.



Methodology: We first identify parallelizable regions within
each KOALA program and rewrite them to invoke parallel.
We aimed for a reasonable use of parallel, modifying only
parallelizable pipelines that each take under an hour to identify
and rewrite—typically ones with (1) independently processed
input files, and (2) efficient segment-based processing that
requires minimal or no synchronization and aggregation. The
latter often takes advantage of GNU parallel’s --pipe to
parallelize input stream processing.
Results: GNU parallel achieves substantial speedups in
benchmarks that involve I/O-bound operations or are triv-
ially parallelizable. For instance, file-mod involves con-
verting multiple media files concurrently, resulting in GNU
parallel speeding it up by 3.84× and fully utilizing all
available CPU cores. Similarly, nlp processes multiple data
files independently, resulting in a speedup of 6.46×. GNU
parallel speedups are less pronounced for scripts that do
not have these features, such as those in ci-cd and repl
that result in 1.16× and 0.95× respectively. These addition-
ally either already use parallelism internally in their command
invocations, compiling multiple files or include commands
that do not benefit from parallel’s parallelization model,
such as git or find.

A few cases do not yield speedup. For example, the
unixfun benchmark involves pipeline stages dependent on
the output of previous stages, limiting parallel’s approach:
the interdependent nature of these stages prevented GNU
parallel from fully exploiting parallelism, resulting an av-
erage speedup of 1.02×.
Takeaway: KOALA confirms that GNU parallel can accel-
erate I/O-bound tasks and loops with no interdependencies—
e.g., file-mod—achieving average speedups of 2.6×. Lim-
ited acceleration comes from scripts with sequential opera-
tions or ones that require sophisticated splitting and aggrega-
tion (e.g., unixfun and web-search).

7.3 hS

To assess whether KOALA aids the characterization of hS [52],
we apply it on KOALA focusing on programs likely to benefit
from out-of-order execution.
Methodology: As hS is currently under development, we use
an early-stage hS prototype shared by its authors, configured
via the KOALA_SHELL variable.

Not all benchmarks are executable by the current version
of hS. For the following benchmark sets, hS succeeded on
only a subset of the scripts: analytics, bio, ml, nlp,
unixfun, weather, and web-search. The following
benchmark sets as a whole either fail or produce incor-
rect results with hS, and are thus omitted entirely: ci-cd,
file-mod, llm, nlp, oneliners, pkg, and repl. In
addition, hS was unable to run the ray-tracing script in
analytics.

Results: hS achieves significant speedups on scripts that
include syntactic regions that have no dependencies be-
tween them. Speedups range between 1.5–4.97×, with
analytics and unixfun at the two ends of this range.
Other benchmarks resulting in significant speedups include
weather and bio.

Scripts that involve dependencies between stages do not
benefit from hS. Such slowdowns range from 0.97× in
covid to 0.47× in websearch, averaging 0.72× across
all benchmarks. They can be attributed to constant costs stem-
ming from hS’s speculative execution, related to the envi-
ronment isolation and tracing, which allows hS to roll back
effects in cases of misprediction.
Takeaway: KOALA reveals that hS can provide benefits that
are significant, especially when computations feature inde-
pendent stages. Typical computations, however, offer a mix
of out-of-order optimization opportunities, at times masked
by overheads in the hS prototype.

7.4 PaSh
We apply PASH on KOALA to understand whether it can
characterize PASH’s ability to accelerate shell programs.
Methodology: We use the latest version of PASH (commit
0d0a563) and set KOALA_SHELL to ./pa.sh --width 4 ,
i.e., configuring the parallelization degree to 4×. We do not
replace script fragments via alias and function con-
structs that can be annotated with additional parallelizability
information; this would allow PASH to extract additional
speedup but result in significantly more work. PASH fails
when executing the bio benchmark.
Results: PASH’s command-aware parallelization strategy
achieves significant speedups in scripts with multi-stage
pipelines or for -loops with no data dependencies across
iterations. For example, it achieves speedups of 2.14× and
1.82× on oneliners and covid respectively.

Naturally, benchmarks or benchmark fragments for which
PASH had no annotations, and thus does not parallelize, see
no speedups—e.g., pkg, bio, and file-mod. Additionally,
PASH does not speed up scripts that include no syntactic
constructs it can parallelize—e.g., repl and ci-cd bench-
marks, which do not include pipelines or parallelizable for -
loops.
Takeaway: KOALA reveals that PASH can deliver substan-
tial speedups for scripts that fall within its parallelization
domain. However, its effectiveness depends on the availabil-
ity of command annotations and the amenability of programs
to the constructs PASH can operate on.

8 Related Work

Benchmark suites: Progress in research depends on apples-
to-apples comparisons—and in computer science, that often



means open and reusable benchmark suites. Widely cited
benchmark suites in memory-managed environments [15],
database transactions [65], parallel processing [19], other ar-
eas [20, 36, 42] offer a good examples of their widespread ap-
plicability and use. Similar to these suites, KOALA comes with
additional support and is expected to release improvements
every few years; different from them, it targets performance-
oriented systems for the shell—an area that has not yet en-
joyed the existence of a systematic benchmark suite.

The DaCapo [15] and Gabriel [28] benchmarks offer par-
ticularly good parallels, as they focus on programming en-
vironments that did not have a benchmark suite before their
release—like these benchmarks, KOALA fills a gap.

Shell studies and datasets: Recent studies collect shell
scripts or fragments of scripts—typically in Bash—to an-
alyze their source, understand their properties, and extract key
insights. Examples of such studies include the use of Bash in
the wild [22], the characteristics of build scripts in Linux dis-
tributions [40], and the use of aliases and shell customization
in the wild [71], cybersecurity training [84], and interactive
coding [89]. These studies do not aim at (creating collec-
tions for) evaluating performance optimizations. In contrast,
KOALA aims at help characterizing systems and tools that
optimize shell programs. KOALA offers curated end-to-end
programs with known inputs, dependencies, and behaviors
that stress both the shell and the underlying commands.

Shell test and correctness suites: A few test suites focus on
evaluating the correctness of shell implementations and their
conformance to certain standards. The POSIX test suite [78] is
a key resource for validating compliance of a shell implemen-
tation with the POSIX standard. The Smoosh test suite [33]
refines and complements the POSIX test suite. The Modernish
shell library/polyfill has a sophisticated diagnostic routine that
amounts to shell tests [56]. There are also a variety of testing
frameworks designed for automated testing in and of shell
scripts [11, 44, 49, 77]. All of these suites focus on testing
functionality rather than characterizing performance, and are
thus distinct from and complementary to KOALA.

Shell microbenchmarks: Several benchmark suites target
the evaluation of specific shell-language constructs via mi-
crobenchmarks. ShellBench [48] provides a collection of
small scripts (ranging from 8–95 lines of code) designed to
stress individual shell features—e.g., variable substitution,
expansion, and subshell creation. Similarly, zsh-bench [68],
the Oils benchmarks [8], and UnixBench [47] focus on iso-
lated performance characteristics—e.g., interactive shell be-
havior or command invocation times. In contrast, KOALA
offers larger, more diverse, whole-program benchmarks (95
programs, 17–2428 lines each) that perform end-to-end com-
putations, operate over large datasets, and involve substantial
work outside the shell interpreter itself.

Performance properties and characterization: Prior re-
search on benchmark sets often discusses language-specific

properties about the programs involved—for example, the im-
pact of garbage collection [15,28,51] or the structural features
in object-oriented benchmark suites [15, 37, 51]. While im-
portant in other domains, these characteristics have no direct
equivalent in shell programs; KOALA instead focuses on the
shell as glue, carefully distinguishing between the time spent
in the shell interpreter and in third-party commands.

Earlier work also studies the behavior of programs in simu-
lation or on hardware [25, 30, 35]. KOALA’s characterization
focuses on properties that are independent of any particu-
lar hardware or operating system implementation. KOALA
will make it easy to use shell programs as workloads in the
evaluation of general-purpose computational substrates.
Evaluations of shell programs: A variety of systems from
several different authors attempt to operate on, optimize, or
accelerate shell programs—e.g., achieving elision [14], paral-
lelization [85], fusion [9], synthesis [72], distribution [66], mo-
bile [88], serverless [54], and syscall refinement [29]. These
further demonstrate the acute need for a standardized, usable,
and replicable benchmark suite for the shell.

9 Discussion and Conclusion

Benchmark programs are crucial for evaluating ideas, com-
paring and contrasting approaches, and fueling academic
and industrial research. They are especially needed in sys-
tems research, where many of the key theses revolve around
performance-related arguments and their quantitative evalua-
tion. This need is particularly acute in the context of the shell,
where no benchmark suite currently exists.

KOALA is a benchmark suite aimed at the characterization
of performance-oriented shell research. It combines a system-
atic collection of diverse shell programs collected from tasks
found in the wild, various real inputs to these programs facil-
itating small and large deployments, extensive analysis and
characterization aiding their understanding, and additional
infrastructure and tooling aimed at usability and reproducibil-
ity in systems research. Static and dynamic characterization
confirms that the KOALA programs perform a variety of tasks
commonly performed in the shell; combine all major language
features of the POSIX shell; use a variety of POSIX, GNU
Coreutils, and third-party components; and operate on inputs
of varying size and composition.
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fanović, Darko and VanDrunen, Thomas and von Dincklage, Daniel
and Wiedermann, Ben. The DaCapo benchmarks: java benchmarking
development and analysis. In Proceedings of the 21st Annual ACM
SIGPLAN Conference on Object-Oriented Programming Systems, Lan-
guages, and Applications, OOPSLA ’06, page 169–190, New York,
NY, USA, 2006. Association for Computing Machinery.

[16] Brown University Department of Computer Science. CSCI 1380:
Distributed Computer Systems. https://cs.brown.edu/courses/
csci1380, 2025. Accessed: 2025-06-04.

[17] Cappellini, Enrico and Welker, Frido and Pandolfi, et al. Early Pleis-
tocene enamel proteome from Dmanisi resolves Stephanorhinus phy-
logeny. Nature, 574(7776):103–107, Oct 2019.

[18] Charlie Curtsinger and Daniel W. Barowy. Riker: Always-Correct
and Fast Incremental Builds from Simple Specifications. In 2022
USENIX Annual Technical Conference (USENIX ATC 22), pages 885–
898, Carlsbad, CA, July 2022. USENIX Association.

[19] Christian Bienia and Sanjeev Kumar and Jaswinder Pal Singh and Kai
Li. The PARSEC Benchmark Suite: Characterization and Architectural
Implications. In Proceedings of the 17th International Conference
on Parallel Architectures and Compilation Techniques (PACT ’08),
pages 72–81, New York, NY, USA, 2008. Association for Computing
Machinery.

[20] Cohen, Gregory and Afshar, Saeed and Tapson, Jonathan and van
Schaik, André. EMNIST: Extending MNIST to handwritten letters.
In 2017 International Joint Conference on Neural Networks (IJCNN),
pages 2921–2926, 2017.

[21] Cora Coleman and William G. Griswold and Nick Mitchell. Do Cloud
Developers Prefer CLIs or Web Consoles? CLIs Mostly, Though It
Varies by Task. 2022.

[22] Dong, Yiwen and Li, Zheyang and Tian, Yongqiang and Sun, Chengnian
and Godfrey, Michael W. and Nagappan, Meiyappan. Bash in the Wild:
Language Usage, Code Smells, and Bugs . 32(1):1–22.

[23] Durumeric, Zakir and Wustrow, Eric and Halderman, J. Alex. ZMap:
fast internet-wide scanning and its security applications. In Proceedings
of the 22nd USENIX Conference on Security, SEC’13, page 605–620,
USA, 2013. USENIX Association.

[24] Edward Tufte. New York City Weather Chart. https://www.
edwardtufte.com/notebook/new-york-city-weather-chart,
2004. Accessed: 2025-06-02.

[25] Eeckhout, Lieven and Georges, Andy and De Bosschere, Koen. How
java programs interact with virtual machines at the microarchitectural
level. SIGPLAN Not., 38(11):169–186, October 2003.

[26] Elias Dabbas. Web Server Access Logs. https://www.kaggle.com/
datasets/eliasdabbas/web-server-access-logs, 2020. Ac-
cessed June 3, 2025.

[27] Evangelos Lamprou. Foundation Models and Unix. Paged Out!, (6):9,
March 2025.

[28] Gabriel, Richard P. Performance and Evaluation of LISP Systems. The
MIT Press, 08 1985.

[29] Gaidis, Alexander J. and Atlidakis, Vaggelis and Kemerlis, Vasileios P.
SysXCHG: Refining Privilege with Adaptive System Call Filters. In
Proceedings of the 2023 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’23, page 1964–1978, New York, NY,
USA, 2023. Association for Computing Machinery.

[30] Gan, Yu and Zhang, Yanqi and Cheng, Dailun and Shetty, Ankitha and
Rathi, Priyal and Katarki, Nayan and Bruno, Ariana and Hu, Justin and
Ritchken, Brian and Jackson, Brendon and Hu, Kelvin and Pancholi,
Meghna and He, Yuan and Clancy, Brett and Colen, Chris and Wen,
Fukang and Leung, Catherine and Wang, Siyuan and Zaruvinsky, Leon
and Espinosa, Mateo and Lin, Rick and Liu, Zhongling and Padilla,
Jake and Delimitrou, Christina. An Open-Source Benchmark Suite for
Microservices and Their Hardware-Software Implications for Cloud
& Edge Systems. In Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS ’19, page 3–18, New York, NY, USA,
2019. Association for Computing Machinery.

[31] Gemma Team. Gemma 3 Technical Report. 2025.

[32] Github Inc. The top programming languages. https://octoverse.
github.com/2022/top-programming-languages, 2022.

[33] Greenberg, Michael and Blatt, Austin J. Executable formal semantics
for the POSIX shell. Proc. ACM Program. Lang., 4(POPL), December
2019.

https://aur.archlinux.org
https://www.noaa.gov
https://www.noaa.gov
https://www.npmjs.com
https://ollama.com
https://adamdrake.com/command-line-tools-can-be-235x-faster-than-your-hadoop-cluster.html
https://adamdrake.com/command-line-tools-can-be-235x-faster-than-your-hadoop-cluster.html
https://adamdrake.com/command-line-tools-can-be-235x-faster-than-your-hadoop-cluster.html
https://github.com/oils-for-unix/oils/tree/master/benchmarks
https://github.com/oils-for-unix/oils/tree/master/benchmarks
https://github.com/armandocerna/dotfiles/blob/master/scripts/pacaur.sh
https://github.com/armandocerna/dotfiles/blob/master/scripts/pacaur.sh
https://bats-core.readthedocs.io/en/stable
https://cs.brown.edu/courses/csci1380
https://cs.brown.edu/courses/csci1380
https://www.edwardtufte.com/notebook/new-york-city-weather-chart
https://www.edwardtufte.com/notebook/new-york-city-weather-chart
https://www.kaggle.com/datasets/eliasdabbas/web-server-access-logs
https://www.kaggle.com/datasets/eliasdabbas/web-server-access-logs
 https://octoverse.github.com/2022/top-programming-languages
 https://octoverse.github.com/2022/top-programming-languages


[34] Greenberg, Michael and Kallas, Konstantinos and Vasilakis, Nikos. The
Future of the Shell: Unix and Beyond. In Proceedings of the Workshop
on Hot Topics in Operating Systems, HotOS ’21, pages 240–241, New
York, NY, USA, 2021. Association for Computing Machinery.

[35] Hauswirth, Matthias and Diwan, Amer and Sweeney, Peter F. and
Mozer, Michael C. Automating vertical profiling. In Proceedings
of the 20th Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, OOPSLA ’05,
page 281–296, New York, NY, USA, 2005. Association for Computing
Machinery.

[36] Hazimeh, Ahmad and Herrera, Adrian and Payer, Mathias. Magma: A
Ground-Truth Fuzzing Benchmark. Proc. ACM Meas. Anal. Comput.
Syst., 4(3), November 2020.

[37] Hölzle, Urs and Ungar, David. Do Object-Oriented Languages Need
Special Hardware Support? In Proceedings of the 9th European Con-
ference on Object-Oriented Programming, ECOOP ’95, page 283–302,
Berlin, Heidelberg, 1995. Springer-Verlag.

[38] Ibrahim, Fadhl and Oppelt, Julian and Maragkakis, Manolis and Moure-
latos, Zissimos. TERA-Seq: true end-to-end sequencing of native RNA
molecules for transcriptome characterization. Nucleic Acids Research,
49(20):e115, 2021.

[39] Israel, Abebe. VPS Audit. https://vpsaudit.vernu.dev. Ac-
cessed: 2025-01-13.

[40] Jeannerod, Nicolas and Régis-Gianas, Yann and Treinen, Ralf. Having
Fun With 31.521 Shell Scripts. April 2017.

[41] Jon Puritz. Bio594: Using genomic techniques to examine the evolution
of populations. https://git.io/JY6J7, 2019.

[42] Just, René and Jalali, Darioush and Ernst, Michael D. Defects4J: a
database of existing faults to enable controlled testing studies for Java
programs. In Proceedings of the 2014 International Symposium on
Software Testing and Analysis, ISSTA 2014, page 437–440, New York,
NY, USA, 2014. Association for Computing Machinery.

[43] Justine Tunney. Bash One-Liners for LLMs. https://justine.lol/
oneliners, 2023. Accessed: 2025-06-01.

[44] Kate Ward. shUnit2 - xUnit unit testing framework for Bourne based
shell scripts. https://github.com/kward/shunit2. Accessed:
2025-01-01.

[45] Kenneth Ward Church. Unix for Poets, 1994.
[46] Kirillov, Alexander and Mintun, Eric and Ravi, Nikhila and Mao, Hanzi

and Rolland, Chloe and Gustafson, Laura and Xiao, Tete and Whitehead,
Spencer and Berg, Alexander C. and Lo, Wan-Yen and Dollár, Piotr and
Girshick, Ross. Segment Anything. In 2023 IEEE/CVF International
Conference on Computer Vision (ICCV), pages 3992–4003, 2023.

[47] Kirk D. Lucas and Contributors. UnixBench: The BYTE UNIX Bench-
mark Suite. https://github.com/kdlucas/byte-unixbench,
2012. Accessed: 2025-04-28.

[48] Koichi Nakashima. ShellBench: A POSIX Shell Benchmark Suite.
https://github.com/shellspec/shellbench, 2021. Accessed:
2025-04-28.

[49] Koichi Nakashima and contributors. ShellSpec - A Full-featured BDD
Framework for Shell Scripts. https://shellspec.info. Accessed:
2025-01-01.

[50] Konstantinos Kallas and Tammam Mustafa and Jan Bielak and Dimitris
Karnikis and Thurston H.Y. Dang and Michael Greenberg and Nikos
Vasilakis. Practically Correct, Just-in-Time Shell Script Paralleliza-
tion. In 16th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 22), pages 769–785, Carlsbad, CA, July 2022.
USENIX Association.

[51] Lengauer, Philipp and Bitto, Verena and Mössenböck, Hanspeter and
Weninger, Markus. A Comprehensive Java Benchmark Study on Mem-
ory and Garbage Collection Behavior of DaCapo, DaCapo Scala, and
SPECjvm2008. In Proceedings of the 8th ACM/SPEC on International
Conference on Performance Engineering, ICPE ’17, page 3–14, New
York, NY, USA, 2017. Association for Computing Machinery.

[52] Liargkovas, Georgios and Kallas, Konstantinos and Greenberg, Michael
and Vasilakis, Nikos. Executing Shell Scripts in the Wrong Order,
Correctly. In Proceedings of the 19th Workshop on Hot Topics in
Operating Systems, HOTOS ’23, page 103–109, New York, NY, USA,
2023. Association for Computing Machinery.

[53] libdash developers. libdash. "https://github.com/binpash/
libdash/tree/master".

[54] Mahéo, Aurèle and Sutra, Pierre and Tarrant, Tristan. The serverless
shell. In Proceedings of the 22nd International Middleware Conference:
Industrial Track, Middleware ’21, page 9–15, New York, NY, USA,
2021. Association for Computing Machinery.

[55] Marek Majkowski. When Bloom filters don’t bloom. https:
//blog.cloudflare.com/when-bloom-filters-dont-bloom,
March 2 2020. Accessed: 2025-01-13.

[56] Martijn Dekker. Modernish. https://github.com/modernish/
modernish, 2016. Accessed: 2025-06-02.

[57] Michael S. Hart and Project Gutenberg. Project Gutenberg. https:
//www.gutenberg.org, 1971.

[58] Netresec. Publicly available PCAP files. https://www.netresec.
com/?page=PcapFiles, 2025. Accessed: 2025-06-02.

[59] Ole Tange. GNU Parallel - The Command-Line Power Tool. ;login:
The USENIX Magazine, 36(1):42–47, Feb 2011.

[60] OpenAI. OpenAI API: Embeddings Guide, 2024. Accessed: 2025-06-
02.

[61] Paszke, Adam and Gross, Sam and Massa, Francisco and Lerer, Adam
and Bradbury, James and Chanan, Gregory and Killeen, Trevor and
Lin, Zeming and Gimelshein, Natalia and Antiga, Luca and Desmaison,
Alban and Köpf, Andreas and Yang, Edward and DeVito, Zach and
Raison, Martin and Tejani, Alykhan and Chilamkurthy, Sasank and
Steiner, Benoit and Fang, Lu and Bai, Junjie and Chintala, Soumith.
PyTorch: an imperative style, high-performance deep learning library.
Curran Associates Inc., Red Hook, NY, USA, 2019.

[62] Pawan Bhandari. Solutions to unixgame.io. https://git.io/Jf2dn,
2020. Accessed: 2020-04-14.

[63] Pedregosa, Fabian and Varoquaux, Gaël and Gramfort, Alexandre and
Michel, Vincent and Thirion, Bertrand and Grisel, Olivier and Blondel,
Mathieu and Prettenhofer, Peter and Weiss, Ron and Dubourg, Vincent
and Vanderplas, Jake and Passos, Alexandre and Cournapeau, David
and Brucher, Matthieu and Perrot, Matthieu and Duchesnay, Édouard.
Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res.,
12(null):2825–2830, November 2011.

[64] Peter, Stéphane. makeself - Make self-extractable archives on Unix.
https://makeself.io. Accessed: 2025-01-13.

[65] Poess, Meikel and Floyd, Chris. New TPC benchmarks for decision
support and web commerce. SIGMOD Rec., 29(4):64–71, December
2000.

[66] Raghavan, Deepti and Fouladi, Sadjad and Levis, Philip and Zaharia,
Matei. POSH: a data-aware shell. In Proceedings of the 2020 USENIX
Conference on Usenix Annual Technical Conference, USENIX ATC’20,
USA, 2020. USENIX Association.

[67] Ritchie, Dennis M. and Thompson, Ken. The UNIX time-sharing
system. CACM, 17(7):365–375, July 1974.

[68] Roman Perepelitsa and Contributors. zsh-bench: Benchmark for Inter-
active Zsh. https://github.com/romkatv/zsh-bench, 2021. Ac-
cessed: 2025-04-28.

[69] S. Greenberg and I.H. Witten. Directing the User Interface: How People
Use Command-Based Computer Systems. IFAC Proceedings Volumes,
21(5):349–355, 1988. 3rd IFAC Conference on Analysis, Design and
Evaluation of Man-Machine Systems 1988, Oulu, Finland, 14-16 June
1988.

https://vpsaudit.vernu.dev
https://git.io/JY6J7
https://justine.lol/oneliners
https://justine.lol/oneliners
https://github.com/kward/shunit2
https://github.com/kdlucas/byte-unixbench
https://github.com/shellspec/shellbench
https://shellspec.info
"https://github.com/binpash/libdash/tree/master"
"https://github.com/binpash/libdash/tree/master"
https://blog.cloudflare.com/when-bloom-filters-dont-bloom
https://blog.cloudflare.com/when-bloom-filters-dont-bloom
https://github.com/modernish/modernish
https://github.com/modernish/modernish
https://www.gutenberg.org
https://www.gutenberg.org
https://www.netresec.com/?page=PcapFiles
https://www.netresec.com/?page=PcapFiles
https://git.io/Jf2dn
https://makeself.io
https://github.com/romkatv/zsh-bench


[70] Sadjad Fouladi and Francisco Romero and Dan Iter and Qian Li and
Shuvo Chatterjee and Christos Kozyrakis and Matei Zaharia and Keith
Winstein. From Laptop to Lambda: Outsourcing Everyday Jobs to
Thousands of Transient Functional Containers. In 2019 USENIX An-
nual Technical Conference (USENIX ATC 19), pages 475–488, Renton,
WA, July 2019. USENIX Association.

[71] Schröder, Michael and Cito, Jürgen. An empirical investigation
of command-line customization. Empirical Software Engineering,
27(2):30, 2021.

[72] Shen, Jiasi and Rinard, Martin and Vasilakis, Nikos. Automatic Syn-
thesis of Parallel Unix Commands and Pipelines with KumQuat. In
Proceedings of the 27th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, PPoPP ’22, pages 431–432, New
York, NY, USA, 2022. Association for Computing Machinery.

[73] Simon Willison. LLM: A CLI tool and Python library for interacting
with Large Language Models. https://llm.datasette.io. Ac-
cessed: 2025-06-02.

[74] Spinellis, Diomidis and Fragkoulis, Marios. Extending Unix Pipelines
to DAGs. IEEE Transactions on Computers, 66(9):1547–1561, 2017.

[75] Tammam Mustafa and Konstantinos Kallas and Pratyush Das and Nikos
Vasilakis. DiSh: Dynamic Shell-Script Distribution. In 20th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
23), pages 341–356, Boston, MA, April 2023. USENIX Association.

[76] Taylor, Dave and Perry, Brandon. Wicked Cool Shell Scripts: 101
Scripts for Linux, OS X, and UNIX Systems. No Starch Press, 2016.

[77] The Open Group. The Test Environment Toolkit. https://tetworks.
opengroup.org. Accessed: 2025-01-01.

[78] The Open Group. VSCPCTS 2016 Test Suite. https://www.
opengroup.org/testing/testsuites/vscpcts2016.htm. Ac-
cessed: 2025-01-01.

[79] The SAM/BAM Format Specification Working Group. Sequence Align-
ment/Map Format Specification. https://samtools.github.io/
hts-specs/SAMv1.pdf, November. Version 1.6, last modified on 6
Nov 2024. Accessed: 2025-01-13.

[80] Tom White. Hadoop: The Definitive Guide. O’Reilly Media, Inc, 2009.

[81] Tsaliki, Eleftheria and Spinellis, Diomedes. The Real Numbers for
Athens Buses, 2020.

[82] U.S. Securities and Exchange Commission. EDGAR Log
File Data Sets. https://www.sec.gov/data-research/
sec-markets-data/edgar-log-file-data-sets, 2024. Ac-
cessed June 3, 2025.

[83] Utpala, Saiteja and Gu, Alex and Chen, Pin-Yu. Language Agnostic
Code Embeddings. In Duh, Kevin and Gomez, Helena and Bethard,
Steven, editor, Proceedings of the 2024 Conference of the North Amer-
ican Chapter of the Association for Computational Linguistics: Hu-
man Language Technologies (Volume 1: Long Papers), pages 678–691,
Mexico City, Mexico, June 2024. Association for Computational Lin-
guistics.

[84] Valdemar Švábenský and Jan Vykopal and Pavel Seda and Pavel Čeleda.
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For the latest source code, software dependencies, and
multi-tiered input data for the KOALA benchmark suite,
please refer to the project’s online repository.

Appendix I Benchmark dependencies

The dependencies of each KOALA benchmark can be found
in the project’s repository. In general, KOALA benchmarks
depend on three elements: (1) the source code of each
benchmark; (2) input datasets for each benchmark (e.g.,
Wikipedia mirror for web-search); (3) additional third-party
components (e.g., Arch Linux packages for pkg). The in-
frastructure offers highly available replicas of all three ele-
ments—including over 600 Debian packages, 50 PyPI pack-
ages, 110 AUR packages, 1964 npm packages, and their tran-
sitive dependencies totalling more than 400 GB of data—to
achieve permanent availability and aid reproducibility. This
replication is achieved at two levels, namely (1) across all
three universities involved in this research, each featuring ad-
ditional replication and fault-tolerance support, and (2) scal-
able cloud storage further backed up by permanently-available
archival storage on Zenodo.

Appendix II Adoption effort

Evaluating systems with KOALA requires varying levels of
effort depending on their design goals, degree of automation,
and artifact maturity. For the Shark and parallel systems,
this involved manual changes to the benchmark scripts. For
Shark, modifications typically included identifying paralleliz-
able regions in loops and applying background execution with
& and wait, along with the removal of unnecessary cat com-
mands and the use of tee to preserve I/O semantics (e.g., in
bio, analytics, and file-mod). In some benchmarks,
such as ci-cd, repl, and unixfun, changes spanned tens
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of lines due to multiple independent compilation or execution
steps. For parallel, adaptations involved wrapping loops or
commands using the parallel utility. This process required
changes in the order of 1-3 LoC in benchmarks with state-
less pipelines or simple loops (e.g., pkg and nlp), but was
more intrusive in cases like covid, analytics, and repl,
where it required identifying parallelizable regions, exporting
computations as shell functions, and occasionally introducing
temporary files to manage intermediate data. These modifica-
tions reflect the intended use and capabilities of each system
rather than any requirement imposed by KOALA, are doc-
umented in the public repositories kbensh/koala-shark and
kbensh/koala-parallel. In contrast, both hS and PASH were
applied without any manual changes to the benchmarks.

Appendix III Artifact

The structure of this section mirrors the artifact evaluation
process. All information can be found in the frozen atc25-ae
branch of KOALA’s GitHub repository.

• Artifact available: All links pointing to the benchmark
source code and accompanying data hosted on two-tiered
storage.

• Artifact functional: Usage documentation for the KOALA
harness and how to exercise individual benchmarks.

• Results reproducible: Instructions for reproducing
static (§5), dynamic (§6) and diversity (fig. 2) character-
ization results for all benchmarks.

Scope: The available artifact is a set of benchmark programs,
all their inputs, the infrastructure for running them, and tooling
for their static and dynamic characterization. Specifically, it
includes:

• A diverse collection of real-world shell scripts spanning
multiple domains and tasks.

• A scalable and durable infrastructure for managing
benchmark inputs at different sizes.

• Reusable infrastructure including automation scripts for
dependency setup, execution, validation, and correctness
checking.

• A suite of static and dynamic analysis tools to character-
ize the benchmarks.

This artifact can be used by systems researchers and perfor-
mance engineers to evaluate prototype systems and conduct
reproducible experiments over a common shell benchmark
suite.
Contents: The artifact includes:

• Benchmark programs: 126 scripts grouped in 14 sets.

• Input datasets: Three input sizes (min, small, and
full), hosted on both archival and scalable storage.

• Execution infrastructure: Scripts to automatically
download inputs, set up containers, install dependencies,
and run benchmarks.

• Analysis infrastructure: Scripts for static/dynamic
characterization, correctness validation, and principal-
component analysis.

• Documentation: A top-level README and benchmark-
specific subdirectories, describing each benchmark’s pur-
pose, usage, and input/output structure.

Hosting: The artifact is hosted at:

• GitHub: kbensh/koala Branch: main (latest version),
atc25-ae (frozen for artifact evaluation)

• Permanent archival storage (Zenodo).

• Scalable, fast-access storage.

See Appendix I in the README for the full table of input links,
or visit kben.sh/data for an up-to-date index of all inputs and
benchmark dependencies across all storage tiers.
Installation: KOALA is available via several means, includ-
ing:

• Git: git clone git@github.com:kbensh/koala.git

• Docker: docker pull ghcr.io/kbensh/koala

• Shell: curl -s up.kben.sh | sh

Installation instructions can also found at the top-level
README.

https://github.com/kbensh/koala-shark
https://github.com/kbensh/koala-parallel
https://github.com/kbensh/koala/blob/atc25-ae/INSTRUCTIONS.md#artifact-available-10-minutes
https://github.com/kbensh/koala/blob/atc25-ae/INSTRUCTIONS.md#artifact-functional-20-minutes-optionally-3-hours
https://github.com/kbensh/koala/blob/atc25-ae/INSTRUCTIONS.md#results-reproducible-about-3-hours
https://github.com/kbensh/benchmarks
https://github.com/kbensh/koala/blob/atc25-ae/INSTRUCTIONS.md#appendix-i-all-inputs
https://kben.sh/data
https://github.com/kbensh/koala/blob/atc25-ae/README.md
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