Fractal: Fault-Tolerant Shell-Script Distribution

Zhicheng Huang*
Brown University

Konstantinos Kallas

University of California, Los Angeles

Abstract

This paper presents FRACTAL, a new system that offers fault
tolerant distributed shell script execution with unmodified
scripts. FRACTAL first identifies recoverable regions from
side-effectful ones, and augments them with additional run-
time support aimed at fault recovery. It employs precise de-
pendency and progress tracking at the subgraph level to offer
sound and efficient fault recovery. It minimizes the num-
ber of upstream regions that are re-executed during recov-
ery and ensures exactly-once semantics upon recovery for
downstream regions. Evaluation on 4- and 30-node clus-
ters indicates average failure-free speedups of (1) >9.6x
over Bash, a single-node shell-interpreter baseline, (2) >5.5x
over Hadoop Streaming, a MapReduce system that supports
language-agnostic third-party components, and (3) 17% over
DiSH, a state-of-the-art failure-intolerant shell-script distri-
bution system—all while recovering 7.8—16.4x faster than
Hadoop Streaming in cases of failures.

1 Introduction

The Unix shell remains the 8" most popular language on
GitHub in 2024 [20], widely used for a variety of work-
loads [17,27,29,50,57]. Its popularity can be attributed
to several characteristics, including (1) language-agnosticism,
flexibly composing an arsenal of task-specific components
available in a variety of languages, and (2) dynamism, provid-
ing features such as command substitution, variable expan-
sion, and file system reflection.

Unfortunately, these characteristics complicate fault-
tolerant shell-script scale out. The black-box nature of third-
party components complicates recovery after node failures
by hindering internal state tracking and limiting scale-out
opportunities. Dynamic behaviors and arbitrary side effects
make re-executing script failed fragments challenging, affect-
ing the correctness of re-executed scripts. Tolerating faults is

! Authors contributed equally. Zhicheng is now with the University of
California, San Diego. Ramiz is now with Google.

Ramiz Dundar*
Brown University

Yizheng Xie
Brown University

Nikos Vasilakis
Brown University

T
1] (2 3
i P .] Executor
: | Side-effectful ‘
- Executor

Executor
|

H :?)V%, Coordinator
AT

()
Incompi ete

Fig. 1: FRACTAL’s high-level workflow. FRACTAL (1) isolates
side-effectful regions from recoverable regions; (2) executes recover-
able subgraphs on nodes, tracking locality, dependencies, progress,
and health; (3) detects failures, re-scheduling the minimal set of
unfinished subgraphs for re-execution.

often at odds with retaining the shell’s expressiveness without
requiring users to modify existing (often legacy) scripts.

Typical approaches such as checkpointing [4,5, 7,35, 60],
barriers [10, 11,25], and lineage [28, 66] are ill-suited for the
setting of the shell (viz. §2). As a result, while resaerch on
and around the shell is exploding [23,24,32,38,47,49,62],
currently no system tolerates failures during the distributed
shell-script execution.

Fault-tolerant distribution with Fractal: FRACTAL is a
system supporting fault-tolerant shell-script distribution: it
operates on existing shell scripts without modification, sup-
ports all of the shell’s dynamic features, allows for language-
agnostic composition of black-box components, and is able
to recover from node failures.

FRACTAL (Fig. 3) begins by building a dataflow graph of
the user’s POSIX shell script via PaSh-JIT [32]. Its coordina-
tor then uses command annotations to identify side-effectful
commands unsafe for fault-tolerant distribution. Next, it
wraps inter-subgraph edges lightweight remote-pipe prim-
itive that records byte-level progress and enforces exactly-
once semantics. FRACTAL’s per-subgraph heuristic decides
whether to persist outputs locally to balance runtime over-
head against recovery speed. At runtime, after subgraphs are
scheduled to executor nodes, FRACTAL’s health and progress
monitors continuously track inter-subgraph dependencies and

Tab. 1: Comparison of fault tolerance mechanisms across key desiderata in shell scripts.

Desideratum Checkpointing [4,5,7,35,60] Barrier-based [10, 11,25] Lineage-based [28, 66] FRACTAL
D1 Handles Black-Box State No Yes No Yes
D2 Ad-Hoc Pipe Streaming Integrity No No No Yes
D3 Side-Effect Management Partial No No Yes
D4 Dynamism Compatibility Partial No No Yes
D5 Recovery Granularity Coarse Coarse Fine Fine
D6 No Script Modification Partial Partial No Yes

byte-level delivery to detect failures. When a failure occurs,
its coordinator computes exactly which subgraphs—and any
upstream fragments whose outputs were not persisted—must
be replayed. By re-executing only this minimal set of frag-
ments, FRACTAL eliminates redundant work and guarantees
exactly-once semantics across all downstream regions.
FRACTAL also introduces a new subsystem, £rac (for frac-
ture), for injecting runtime faults for automatically tuning key
parameters and aiding recovery characterization—potentially
useful to other distributed systems that combine black-box
components and thus released as a separate tool.

Key results: In failure-free scenarios, FRACTAL achieves
substantial performance improvements, delivering an average
speedup of 9.6 over Bash, a standard shell interpreter, 5.5 X
over Hadoop Streaming (AHS), cluster-computing system in-
corporating black-box Unix commands, and 17% over DISH,
a recent failure-intolerant scaleout system.

FRACTAL recovers from faults within 1.26 x of the script’s
fault-free runtime, achieving a 9.3 x speedup over AHS—
while supporting improved expressiveness and no manual
modifications to the source programs.

Paper outline and contributions: The paper starts with a
discussion about the design lanscape for fault-tolerant shell-
script distribution (§2). With a motivating example script
example reifying challenges in tolerating faults (§3), it intro-
duces the FRACTAL design overview. It then proceeds with
FRACTAL’s key subsystems (§4-§6):

* Execution engine (§4): FRACTAL’s remote-pipe instru-
mentation, progress and health monitors, and the executor
runtime work in synergy to provide efficient and precise
recovery.

 Performance optimizations (§5): FRACTAL’s targeted op-
timizations to minimize overhead on the critical path, in-
cluding event-driven execution, buffered I/O, and batched
scheduling.

 Fault injection (§6): FRACTAL’s £rac tool enables pre-
cise, large-scale fault injections to characterize recovery
behavior under real-world conditions.

The paper then presents FRACTAL’s evaluation (§7), related
work (§8), and conclusion (§9).

Availability: Upon acceptance, FRACTAL’s implementation
and evaluation—currently hosted in a private repository—will

be made publicly accessible as an MIT-licensed open-source
project at github/blind/fractal.

2 Fault Tolerance for Shell Script

This section begins by outlining the desiderata for fault-
tolerant shell-script distribution (Table 1, col. 1), derived from
the shell’s unique characteristics. It then examines the limita-
tions of existing fault-tolerance mechanisms in meeting these
desiderata (Table 1, cols. 2-4). Finally, it presents FRACTAL’s
design for meeting these desiderata (Table 1, col. 5).

We assume that worker nodes may crash in either fail-stop
or fail-restart fashion, mirroring typical large-scale deploy-
ments on commodity hardware. The control plane or the
client node resilience lies outside the scope for this discussion
and can be mitigated with established techniques including
durable state logging, consensus protocols, and leader elec-
tion via ZooKeeper [26].

2.1 Desiderata

Shell scripts uniquely blend diverse commands, streaming
pipelines, flexible control flow, and dynamic expansion at run-
time. While this provides unmatched expressiveness and sim-
plicity, it complicates fault-tolerant execution significantly. To
guide our design, we identify six key fault-tolerance desider-
ata that any robust shell-script distribution mechanism must
satisfy.

D1 Black-box state handling: Shell pipelines invoke ex-
ternal binaries (e.g., sort, grep, unzip) whose internal state
cannot be inspected or checkpointed. Such commands may
hold gigabytes of data internally without any API for partial
snapshots, making it impossible to selectively roll back and
resume. A fault-tolerance scheme must recover progress with-
out requiring analysis of or hooks in these opaque commands.

D2 Ad-Hoc pipe streaming integrity: Shell commands
communicate via unstructured byte streams over ad-hoc
UNIX pipes, with arbitrary buffering, chunking, and transfor-
mation semantics that vary by command. Failures leave no
record of how many bytes or which logical “records” were
consumed, and replaying an opaque stream risks duplicating
or dropping data. Under failure, the system must guarantee

github/blind/fractal

exactly-once delivery so that no data is lost or duplicated
despite retries.

D3 Side-effect management: Shell commands often per-
form non-idempotent external actions (e.g., appending to files,
making network calls, updating system states) that modify
the environment. Simply re-running a partially completed
side-effectful command can append data again or re-trigger
external actions. Recovery must prevent repeated side effects
or orphaned partial writes.

D4 Dynamism compatibility: Shell scripts resolve control
flow and command invocations only at runtime via loops, con-
ditionals, and variable expansions. A fault-tolerance design
must support these on-the-fly pipelines and not assume a static
operator graph.

D5 Fine recovery granularity: Shell pipelines often chain
many long-running commands so re-executing whole stages
or other coarse-grained recovery units wastes substantial work.
Achieving fine-grained replay is further complicated by black-
box commands with opaque internal state and by ephemeral
outputs already consumed downstream. Therefore, a robust
recovery mechanism must isolate and replay only the minimal
affected fragment of the workflow.

D6 No script modification: Shell scripts are notoriously
difficult to program and maintain [18, 21], and modifying
or re-implementing legacy scripts can be costly and error-
prone [14, 15]. Thus, forcing rewrites is prohibitive. An
ideal solution should preserve existing scripts unchanged,
transparently adding recovery support.

2.2 Existing Approaches

Here, we analyze existing fault-tolerance mechanisms and
their limitations in meeting the desiderata for shell-script dis-
tribution, using three representative paradigms: checkpoint-
ing, barrier-based, and lineage-based systems (some systems
incorporates facets from multiple paradigms). It is worth not-
ing that, in practice, failing to meet even one of the desiderata
may be enough to disqualify a system as a viable solution for
shell scripts.

Checkpointing: Checkpointing-based systems capture pe-
riodic snapshots of process or operator state [4, 5,7, 35, 60].
This model succeeds when the runtime exposes hooks into
each operator, as in streaming engines or controlled process
trees. D1 checkpointing systems require components to
implement APIs such as get-processing-state [5] and
getState [44] to retrieve internal state, but this approach is
not viable due to the opaque nature and language agnosti-
cism of shell commands. Incremental or per-operator snap-
shots reduce overhead but still require instrumentation inside
each command, which is impossible for opaque shell binaries.
D2 Frameworks like Flink [4], Storm [60], and Kafka [35]
embed barriers or use offset-tracked logs, but UNIX pipes

lack any barrier semantics or offset markers, making it infeasi-
ble to checkpoint and resume a byte stream without rewriting
the pipeline around an external broker. D3 Transactional sink
APIs (e.g., Flink’s TwoPhaseCommit SinkFunction) manage
side-effect writes within the framework, but shell scripts per-
form arbitrary file and network I/O outside any transaction
boundary. D4 Traditional checkpointing assumes a fixed
set of operators known ahead of time, complicating recov-
ery when new processes appear mid-execution. CRIU only
snapshots processes it has been explicitly told to monitor,
whereas shell loops and eval spawn new binaries at run-
time without notifying CRIU—capturing those on-the-fly
children would require continuous shell-level hooks to reg-
ister each new process, which is impractical. D5 Full snap-
shots capture entire pipelines or process trees, imposing high
overhead and causing unnecessary re-execution for chains of
short-lived commands; per-command checkpointing would
introduce prohibitive runtime overhead and complex coor-
dination. De Adopting checkpointing for shell scripts de-
mands wrapping or replacing every invocation, violating the
no-modification requirement for legacy or ad-hoc scripts.

Barrier-based: Barrier-based systems such as MapRe-
duce [10, 11] achieve fault tolerance by retrying entire map
or reduce tasks upon failures, relying on a static task graph.
D1 While this model supports black-box tasks, it lacks the
ability to resume partially completed computation: failed
components must restart from scratch, even if most work had
completed. D2 Barrier-based models are not ideal for stream-
ing data; their retry model simply replays upstream outputs,
leading to potential duplication and breaking exactly-once
guarantees. Streaming extensions (e.g., Kafka Streams [35])
guarantee exactly-once by buffering entire micro-batches or
writing to durable topics, but to adapt raw UNIX pipes one
must replace each | with a brokered topic or RDD stage. This
forces serialization and network hops for every pipeline edge
and introduces head-of-line blocking at batch boundaries,
undermining the shell’s low-latency, in-memory streaming
model. D3 Barrier-based retries rerun every command in a
failed task including any non-idempotent side-effectful com-
mands such as file appends or HTTP calls. Because there is
no transactional or deduplication API at the shell level, each
retry re-issues external side-effects, and preventing duplicates
requires invasive wrappers or bespoke idempotency logic
around every shell command, violating transparent execution.
D4 The static task graph must be fully specified before ex-
ecution; shell scripts that spawn new commands via loops
or eval cannot be dynamically incorporated, leaving on-the-
fly pipelines untracked. D5 Recovery granularity is fixed at
task boundaries; defining each shell command as its own task
could narrow scope but forces scripts to be restructured into
dozens or hundreds of map/reduce jobs, incurring prohibitive
scheduling overhead. Dé De Finally, while MapReduce
does not mandate full rewrites, it still requires structuring
logic into map and reduce phases—Ilimiting flexibility and

imposing extra effort when adapting existing or evolving shell
scripts. Hadoop Streaming [25] supports arbitrary binaries
but still forces explicit mapper/reducer wrappers, violating
the no-modification desideratum.

Lineage-based: Lineage-based fault tolerance mechanisms,
as in Dryad [28] and Spark [66], record a DAG of opera-
tor dependencies and recover by replaying only failed tasks.
While effective for deterministic dataflows within a single
framework, they struggle with the ad-hoc, mixed environ-
ment of shell pipelines. D1 Lineage frameworks assume
each operator is a pure function of its visible inputs and out-
puts, but black-box shell commands (e.g., sort, uniq) buffer
and transform data internally without producing retrievable
artifacts, so their progress cannot be reconstructed from lin-
eage alone. D2 Spark Streaming enforces exactly-once by
slicing streams into micro-batches with checkpointed offsets
and write-ahead logs, but ad-hoc UNIX pipes are unbounded
byte streams with no batch boundaries or offset metadata,
making transparent mid-stream resume or replay impossi-
ble without rewriting each pipe as a Spark streaming stage.
D3 Lineage frameworks mitigate side-effects via transac-
tional sinks only if every write goes through their API, but
shell commands perform arbitrary I/O (e.g., », mv) outside
any transaction boundary, requiring invasive wrappers to pre-
vent duplicates. D4 Dynamic DAG registration in systems
like Spark Structured Streaming still requires user callbacks
(e.g., writeStream), whereas shell loops and eval spawn
processes silently, leaving lineage unnotified and unprepared
to recover new branches. D5 Lineage-based models can re-
compute with a fine granularity as long as the tasks and depen-
dencies are explicitly captured within the lineage framework,
where they recompute only the failed partition(s) and their
direct dependencies. D6 Lastly, lineage-based approaches im-
pose significant restructuring burdens on script authors; shell
scripts must be rewritten into deterministic, functional trans-
formations conforming to the lineage system’s programming
model, a requirement particularly cumbersome for legacy or
rapidly evolving scripts.

2.3 Our approach

Atits core, FRACTAL treats a program fragment, as the atomic
unit of computation. This design avoids costly instrumenta-
tions of every individual shell command while remaining fine-
grained enough to avoid large-scale re-execution. At fragment
boundaries, FRACTAL injects minimal runtime primitives that
transparently track progress and enable precise recovery with-
out affecting the internal logic of any black-box command.
This model addresses the key challenges of shell-script
fault tolerance. D1 By tracking only inputs and outputs for
each fragment, we never peek inside a command’s memory or
file descriptors. Each command remains unmodified; recovery
works solely from its byte-stream boundaries. D2 Byte-level
progress tracking guarantees no data loss or duplication, even

1 #!/bin/bash

2 in=${in:-$TOP/log-analysis/nginx-logs}

3 out=${out:/outputs}

4 bots='Googlebot |Bingbot |Baiduspider|Yandex| "'
5 mkdir Sout && hdfs dfs -mkdir /log-analysis
6

7

8

9

1. Download and store nginx logs to HDFS
wget "$SOURCE/data/nginx-logs.zip"
unzip nginx-logs.zip && rm nginx-logs.zip

10 hdfs dfs -put nginx-logs /log-analysis/nginx-logs

12 # 2. Analyze log files
13 for log in $(hdfs dfs -1ls -C $in); do

14 name="$out/$ (basename "$log".log)"

15 # 3. Identify bot IPs by visit frequency

16 hdfs dfs -cat "$log" | grep -E $bots | cut -d" " -fl
17 sort | unig -c | sort -rn >> "${name}.out"

18 # Further analysis omitted for brevity...

19 done

Fig. 2: Log analysis script (Cf.§3). The script downloads Nginx
logs, stores them on a distributed filesystem, and analyzes them
to extract traffic statistics—slightly modified from POSH [49] to
highlight idiomatic shell challenges.

when a fragment mixes streaming filters with blocking op-
erators. D3 Commands with non-idempotent side effects
remain in a special fragment under user control; distributed
fragments perform only pure data transformations or write
to isolated files that can be atomically swapped in upon suc-
cess. D4 Fragments are derived at compile time from the
AST, so any new commands—spawned via loops, condi-
tionals, or environment expansions—automatically become
first-class fault-tolerance units without requiring a static rep-
resentation. D5 FRACTAL recovers at the fragment level,
not per-command. Command-level recovery would incur
prohibitively high scheduling and bookkeeping overhead.
Fragment-level recovery strikes a sweet spot: small enough
to avoid re-doing large amounts of work, yet coarse enough
to amortize the runtime instrumentation cost. Dé All fault-
tolerance logic is injected by the compiler. Users run unmodi-
fied POSIX shell scripts under FRACTAL, without needing to
reexperss their script in constrained APIs.

While the focus is correct and efficient recovery, FRAC-
TAL also aims to deliver near state-of-the-art performance in
failure-free executions.

3 Example and Overview

Scripts that process large datasets usually need to interact
with distributed file systems such as HDFS [52], NFS, or Al-
luxio [37], as their input data does not fit on a single computer.
FRACTAL scales out the computation to facilitate data local-
ity, data parallelism, and pipeline parallelism, while ensuring
recoverability when a participating node fails.

Example script and problem: Fig. 2 presents an example
shell script analyzing log files generated by Nginx, divided

into three parts: (1) setup (L7—10), downloading 150GB of log
data and storing them on HDFS; (2) driver (L13-14, L19), iter-
ating over the HDFS directory, piping log files to the analysis
pipeline and appending results to a dynamically determined
local file; and (3) analysis (L5-1g), identifying known bot
IPs by visit frequency.

A developer opting for distributed execution, either manual
or more recently automated [47,49], is left with only one
option when a node—i.e., part of Fig. 2—fails: to restart
the entire computation. Unfortunately, such a restart impacts
both performance, as a full rerun will waste over 3 hours,
and correctness, as the script appends to a file and thus upon
failure may result in partial outputs—worse even, potentially
mixed with correct results from earlier failure-free executions.

Challenges for fault tolerance: The script in Fig. 2 illus-
trates why fault tolerance is so challenging: it invokes black-
box commands (e.g. unig -c at Lj7) whose internal coun-
ters cannot be inspected or checkpointed (D1), passes data
through chains of ephemeral UNIX pipes (e.g. from grep to
sort to uniq) with no built-in barriers or offsets (D2), and
relies on side-effectful operations (e.g. the append operator >>
at L7) that risk duplication or partial writes upon retry (D3).
Control-flow constructs such as for log in $IN/*.log
spawn commands dynamically based on variable values, pre-
venting any static view of the computation graph (D4). Re-
executing the entire script on 150GB of logs takes over 3
hours, so coarse-grained restart is prohibitively expensive
(D5). Finally, these are often legacy or incrementally main-
tained scripts, so any fault-tolerance scheme must operate
transparently on unmodified POSIX shell programs (D6).

Fractal overview: Fig. 3 presents an overview of FRAC-
TAL. FRACTAL builds on a DFG representation of a POSIX
shell script via PaSh-JIT [32]. FRACTAL’s coordinator then
leverages command annotations to partition subgraphs into
one of three types with different fault-recovery semantics
(Fig. 3 Al): (1) main, which contains the AST region pre-
viously deemed as “unsafe” for distribution and is executed
on a node containing the authoritative shell state and broader
environment—typically, the client node from which the com-
putation is initiated, (2) regular , which does not include an ag-
gregator vertex, and (3) merger , which includes an aggregator
vertex, such as sort -m, responsible for merging the outputs
of multiple upstream subgraphs, It then instruments every
inter-subgraph edge with lightweight communicative primi-
tives (Fig. 3 A2) that record delivered byte offsets and enforce
exactly-once semantics over ad-hoc UNIX pipes. Next, a per-
subgraph, heuristic—based component (Fig. 3 A3) decides
whether to persist each subgraph’s outputs locally, recovery
speed with failure-free overhead. Once prepared, the coordi-
nator schedules subgraphs across executor nodes and relies
on progress and health monitors to track execution progress
and detect failures (Fig. 3 A4-6). On node failure, it identifies
and re-executes only the minimal downstream subgraphs that

did not complete, ensuring both correctness and efficiency in
recovery. Executors (Fig. 3 B1-4) receive their assigned sub-
graphs, reconstruct them into shell scripts, and run them in a
tight, non-blocking event loop that maximizes CPU utilization
without oversubscription.

Results: On a 30-node Cloudlab cluster (§7), FRACTAL ex-
ecutes Fig. 2’s script in 220s (speedup: 40x). Upon failure
at 50% of the execution, FRACTAL executes only the neces-
sary fragments—outputting correct results across all local and
HDFS files in 330s (27.1 x).

4 System Design

This section presents FRACTAL’s fault recovery design. It
then introduces FRACTAL’s core components that drive exe-
cution and recovery.

4.1 Fault Recovery in FRACTAL

When the health monitor alerts the coordinator about a node
failure, rescheduling of the necessary subgraphs occurs in
five steps where FRACTAL (1) identifies all incomplete sub-
graphs assigned to the crashed node and, by querying progress
monitoring, their dependencies; (2) sends kill requests to
subgraphs that cannot be used in the new execution plan; (3)
updates the progress monitor according to the new execution
plan; (4) identifies subgraphs that no longer need to be re-
executed because their results are persisted; (5) distributes the
optimized list of subgraphs based on the new execution plan.

Some of these steps are different depending on whether the
failed node is a merger or regular node. A faulty merger sub-
graph is rescheduled to a healthy executor, with incomplete
upstream dependencies being re-routed to the same executor
and complete dependencies having their persistent outputs
transferred directly. A faulty regular subgraph is re-scheduled
on a healthy executor, but its downstream merger is notified
to continue reading the incomplete stream where the failed
regular left off instead of re-executing the merger subgraph.

While the new execution plan is being prepared, the sched-
uler may receive new dataflow graphs to distribute. To avoid
concurrent modifications to the progress monitor and further
complications, crash handling and scheduling are performed
under locks and are mutually exclusive.

When a loop is unrolled into parallel subgraphs, FRAC-
TAL tracks read-write and write-write dependencies between
iterations to establish execution order and isolation. If an
iteration’s corresponding subgraph fails, the scheduler applies
the standard five-step crash-handling procedure only to that
iteration and any upstream dependencies, while independent
iterations are neither reissued nor re-executed. Completed
iterations either reuse persisted outputs or are simply skipped,
ensuring failures in one iteration do not force recomputation
of its peers unless necessary.

#!/bin/bash
| for log in $(hdfs dfs -1s -C $in); do

hdfs dfs -cat "$log" | grep | cut | sort | uniq | sort -rn > "${log}.out"

i done

C PaSh-JIT Compiler

blkl — cat — grep — cut — sort 7 sort -m — .. — outl

blk2 — cat — grep — cut — sort

C Al Y Side-effect A2 + Remote pipes A3 ? Persist or not

blkl — cat — grep — cut — sort Qsort -m — ..O-Qoutl

;
blk2 = cat grep sortQ)

O Remote Pipe

4——— —> Executor Runtime B2
i 2 Event loop
Event Queue
DFS File Reader
Coordinator . . 4—I B3
Local Disk Persistence
Executor
Progress MONitor -t gy
|} A5 :
Scheduler —A4+ :
f A6 [Executor
Health Monitor — Executor Runtime
i Event loop
Main Event Queue I
Merger i
B Regular DEFS File Reader

Local Disk Persistence 4—'

Fig. 3: FRACTAL’s architecture. From a client shell script, FRACTAL uses PaSh-JIT to build a DFG, applies annotations to isolate the unsafe

main subgraph (A1), and splits the rest into regular and merger subgraphs at HDFS block boundaries. It then instruments each edge with
remote-pipe primitives (A2) and uses a lightweight heuristic to persist outputs per subgraph (A3). The coordinator schedules subgraphs (A4)
and leverages the progress (AS5) and health (A6) monitors to re-execute only failed fragments. Executors reconstruct subgraphs into shell
scripts and run them in a tight, non-blocking event loop (B1-4), streaming data via remote pipes, the distributed file reader, and local cache.

4.2 FRACTAL Components

DFG augmentation: Before scheduling, FRACTAL aug-
ments each DFG fragment with remote pipes to track execu-
tion progress and ensure exactly-once semantics during fault
recovery. For instance, in Fig. 3 (A4), remote pipes are added
at the boundary between the merger and regular fragments as
well as between the merger and main fragment. The sched-
uler then assigns each fragment to executor nodes, replaces
the original DFG edges with these remote pipes, and updates
the progress-monitor metadata.

Remote Pipe: Efficient communication is crucial for precise
recovery, since lost or duplicated streams can break correct-
ness or incur extra work. remote pipes provide unidirectional
channels between a writer (source) and a reader (destination),
both identified by the same edge ID, in either transient (sock-
ets) or persistent (files) mode under a dynamic persistence
switch. If persistence is disabled, the writer opens a socket
and registers its endpoint for the reader to resolve; if enabled,
the writer writes to a file and exposes its path for retrieving
the data during potential re-executions.

Detecting and handling failures is crucial for the remote
pipe. If a connection is lost, the reader periodically queries
the discovery service. When a new address is found—often
due to rescheduling—a new connection is made. Since the
reader knows how many bytes it has already forwarded down-
stream, it can discard duplicates and maintain a correct, non-
repetitive data stream. This behavior is important for certain
side-effectful operations (like the append operator shown in
Fig. §2) to ensure that re-executed subgraphs do not pro-
duce duplicated outputs. The reader consumes the stream
in buffered chunks while maintaining an 8-byte lookahead

for the EOF token. Once the unique marker is detected, it is
stripped off and the complete data is delivered downstream.

Dynamic Output Persistence: Upon node failure, any in-
complete subgraph and its upstream dependencies must be
re-executed, which can be costly if those upstream tasks are
expensive. To reduce this overhead, FRACTAL can persist
the outputs of upstream subgraphs so that reassigned tasks
can read cached results instead of recomputing them. How-
ever, writing to local storage incurs overhead during fault-free
execution, and its impact varies with node hardware (e.g.,
HDD vs. NVMe). To strike a balance, FRACTAL employs a
heuristic-driven dynamic persistence policy that makes per-
subgraph decisions based on static cluster profiling (automati-
cally collected by £rac) and runtime workload characteris-
tics (e.g., commands in subgraphs, their inputs).

Moreover, subgraphs created at HDFS block boundaries
that have no downstream dependents, called singular sub-
graphs, never persist outputs because their results will not be
reused on recovery. When transformed into DFGs, a shell
script may produce both singular subgraphs and non-singular
ones. Therefore, FRACTAL’s dynamic persistence makes per-
subgraph decisions: it disables output persistence for singular
subgraphs and selectively enables it for others based on cost
heuristics. This fine-grained policy minimizes unnecessary
I/O during normal execution while still caching results to
accelerate recovery of expensive upstream tasks.

Progress Monitor: The progress monitor maintains all
metadata needed for fault recovery: subgraph-to-node assign-
ments, completion events, and inter-subgraph dependencies.
Upon completing a send or receive operation, each subgraph
emits a 17-byte completion event to the progress monitor, con-
taining its serialized edge ID and a one-byte flag indicating

whether it sent or received. The scheduler then uses these com-
pact messages to determine exactly which subgraphs must
be re-executed after a failure. When persistence is enabled,
the monitor also tracks file locations so that already-persisted
fragments are not re-executed after a failure.

After each subgraph finishes its execution, whether it re-
ceives or sends data, it sends a special message to the progress
monitor signaling its completion. This metadata is eventu-
ally used by the scheduler to decide what needs to be re-
executed. These messages are intentionally small—only 17
bytes—consisting of a serialized ID identifying the commu-
nication and a single byte indicating whether the receiver or
sender has finished.

There is a specialized component of the progress monitor
primarily responsible for discovery between subgraphs that
need to communicate, as it is neither possible nor efficient to
know every possible endpoint statically. The discovery ser-
vice acts as a barrier between the sources and targets of com-
munication during runtime, blocking one while it waits for
the other until they discover each other and initiate data trans-
fer. Other important responsibilities of the discovery service
include tracking the persisted file locations when dynamic
switching is enabled. This ensures that already-persisted re-
dundant subgraphs are not re-executed in case of failures.
Additionally, the discovery service supports two different
kinds of protocols for singular and non-singular subgraphs,
as they use different means to communicate.

Health Monitor: The health monitor polls the HDFS na-
menode’s JMX endpoint for each data node’s lastContact
heartbeat timestamp. Nodes whose lastContact exceeds a
configurable threshold are flagged offline. This threshold
involves a balance between false positives and false nega-
tives. A small threshold may result in frequent false positives,
where temporary network slowdowns are mistaken for faults,
triggering costly fault recovery mechanisms. Conversely, a
high threshold could cause the system to wait unnecessarily
for outputs from faulty nodes. Therefore, the threshold is
designed to be configurable. The default value of 10 sec-
onds is selected arbitrarily to ensure it does not dominate
the execution time during evaluation (§7), while allowing a
substantial portion of the execution to complete before initi-
ating fault recovery mechanisms. This liveness information
drives the scheduler’s fault recovery decisions, triggering the
reassignment or re-execution of affected subgraphs on healthy
nodes.

Relying on HDFS heartbeats is an intentional choice to
avoid scenarios where FRACTAL nodes appear to be avail-
able but HDFS nodes are not, or vice versa. This creates an
additional dependency between HDFS and FRACTAL, but
since any distributed file system must include a heartbeat
mechanism, it should be possible to use these heartbeats as
an indication of liveliness for FRACTAL nodes.

Executor Runtime: The executor runtime receives serial-

ized subgraphs from the coordinator and deserializes them
into shell scripts. These scripts are then staged in a tempo-
rary directory whose path, along with some metadata, and
enqueued as execution events.

Every 0.1s, the executor runtime performs three actions:
(1) reclaims completed tasks—removing them from the active
pool and recording timing and debug metadata; (2) applies
pending ki1l requests from the coordinator by dropping tar-
geted events from the queue; and (3) launches queued sub-
graphs up to the configured concurrency limit by spawning
new processes.

Additionally, the executor runtime also manages envi-
ronment setup and teardown (e.g., terminating remnants of
rescheduled subgraphs to avoid duplicated executions), col-
lects timing and diagnostic metadata, and enables controlled
fault injection during evaluation.

Command Annotations: Previous systems [32,47,49,62]
uses command annotations to identify opportunities in shell
parallelization. FRACTAL uses annotations extended from
PaSh-JIT and offers a flexible JSON interface that lets devel-
opers supply or override annotations for any third-party or
black-box command. These annotations enable FRACTAL to
distinguish safely re-executable regions (e.g., pure data trans-
formations) from non-re-executable ones (e.g., side-effectful
or non-deterministic operations), ensuring only subgraphs
containing all safe commands are re-exeucuted on failure.
Regions cannot be safely re-executed are offloaded to be part
of the main subgraph, which is executed on the client node.

S Optimizations

This section presents targeted optimizations to FRACTAL’s
critical-path components, reducing control-plane overhead,
and address implementation-specific challenges.

Event Driven Architecture: The executor runtime (§4.2)’s
event loop is one of FRACTAL’s most performance-sensitive
components. To eliminate synchronization overhead,
the executor runtime relies exclusively on atomic opera-
tions—integer assignments and list append/pop—instead of
locks. Completion events are kept to 17 bytes each (edge ID
plus direction flag) to minimize messaging overhead. The
loop polls every 0.1s to balance kill-signal responsiveness
against CPU utilization, and its concurrency level, the max-
imum number of subgraphs launched in parallel, is config-
urable per node, defaulting to the CPU core count to match
hardware capacity.

Buffered I/0: To mark the end of an remote pipe stream,
the writer appends an 8-byte EOF token. However, detecting
and removing this sentinel on-the-fly is challenging because
the reader cannot buffer the entire stream or perform full-
stream scans. To address these challenges, the reader employs
a buffered I/O strategy with several optimizations. It first
allocates a configurable buffer, typically 4096 bytes, and

ensures that at least 8 bytes are initially read——this is always
possible because the presence of the EOF token guarantees at
least 8 bytes of data. After this initial setup, the reader enters a
loop that (1) performs another read to fill the buffer following
the initial 8-byte segment; (2) sends the buffer’s contents,
except for the final 8 bytes, downstream; (3) checks whether
these last 8 bytes match the EOF token and, if they do, stops
reading; and (4) moves the last 8 bytes to the start of the buffer,
ready for the next iteration. This approach reduces overhead
to at most an 8-byte copy for each iteration without generating
unnecessary garbage, offering a significant improvement over
simpler, linear parsing methods.

Batched Scheduling: If a script’s input is relatively large
or consists of many smaller files, FRACTAL may generate an
excessive number of subgraphs to schedule, track, and exe-
cute. In such cases, distributing subgraphs can become more
time-consuming than executing them. To address this issue,
FRACTAL collects and batches all subgraphs with identical
targets into a single request and sends these batches asyn-
chronously to all cluster members. This kind of batching
becomes increasingly important as the cluster size grows.

6 Fault Injection

To aid parameter selection and recovery characteriza-
tion, FRACTAL’s fault-injection subsystem, available as a
command-line tool called £rac, allows injecting runtime
fail-stop and fail-restart faults in large-scale distributed de-
ployments. The £rac subsystem is agnostic to deployment
and component internals, and has been used to inject faults to
FRACTAL, D1SH, and AHS across a variety of environments.
Contrary to manual killing, £rac offers automation, operates
at byte-level and millisecond-level precision, can be driven by
key events, allows automated restarts—and, by operating at
the process-tree level, offers significant performance improve-
ments over complete node shutdown, accelerating parameter
selection and recovery characterization.

Hard faults: Manually shutting down compute nodes run-
ning the executor processes, termed hard fault, ensures they
end up offline by issuing commands to the host environment.
Unfortunately, hard faults are hard to automate at large-scale
experiments. Existing VM shutdown tools are not ideal be-
cause the aforementioned experiments require non-graceful
shutdowns, and verifying that nodes have truly come back
up requires custom Docker-level health checks (e.g., polling
until each block reaches its target replication factor).

Hard faults additionally do not support fine-grained control
over the timing of fault events, crucial for precisely character-
izing a systems’ recovery behavior. Precision is particularly
important for systems that prioritize minimizing runtime over
load balance. Contrary to these systems, ones that priori-
tize balancing load over minimizing latency make roughly
the same progress across all participating nodes—for exam-

ple, AHS’ mapper and reducer executions are load-balanced
across the cluster and thus a fault injection will hit a nodes at
roughly the same execution point as other nodes. But other
systems such as FRACTAL see imbalanced progression across
regular and merger nodes, thus requiring and benefiting from
improved precising in fault injection.

Soft faults: The £rac tool supports two modes of soft faults.
A data-plane mode injects into the data stream a special fault-
sequence token that uniquely matches a wrapper in one of the
nodes. The token flows through the entire DFG, propagated
downstream by command wrappers, and is duplicated by DFG
splitters—i.e., commands that split the input data to identical
subgraphs that implement parallel execution. Most wrappers
propagate the token upon receipt, i.e., they do not feed it
into the command they wrap but propagate it to the output
stream—except for the one wrapping the ingress edge of the
DFG subgraph targeted by the fault token. Upon receipt,
the target wrapper kills all processes in the subgraph. Data-
plane soft faults offer fine-grained byte-level precision for
determining the exact point at which to inject a node fault,
when the precise fault conditions hinge on specific elements
of the data stream.

A control-plane mode sends a special token directly to
the node responsible either at a specific time point or by
the trigger of a specific event. Additional automation col-
lects baseline execution times about the various jobs on each
node. In a subsequent run, the coordinator injects the fault
at a configurable time or percentage of a node’s fault-free
execution time. Focusing on the completion percentage of
individual nodes is important in cases where the execution
is not balanced—for example, 50% end-to-end job comple-
tion does not translate to 50% of AHS’s map or FRACTAL’S
regular node execution, as these nodes typically consume a
minority of the runtime. Once it receives a message from the
coordinator, the fault terminates its HDFS datanode process
and kills the corresponding process. Control-plane soft faults
offer coarser-grained precision for determining the poitn at
which to inject a fault, often incorporating higher-level goals
such as completion percentages.

7 Evaluation

This section characterizes FRACTAL’s performance under
fail-free and fault-induced execution.

Baselines: We compare FRACTAL with (1) Bash [59], a stan-
dard single-node shell interpreter; (2) Apache Hadoop Stream-
ing AHS [25], a production-grade fault-tolerant distributed-
computing system that supports black-box Unix commands;
and (3) DISH [47], a state-of-the-art fault-intolerant shell-
script distribution system.

Benchmarks: We used five sets of real-world benchmarks
(Tab. 2), totaling 77 scripts and 547 lines of shell code
(LoC) excluding empty lines and comments. The Clas-

Tab. 2: Benchmark summary. Summary of all the benchmarks
used to evaluate FRACTAL and their characteristics.

Benchmark Scripts LoC AHS Input
Classics 10 103 3GB
Unix50 34 34 v 10 GB
NLP 22 280 X 10 GB
Analytics 5 62 v 334 GB
Automation 6 68 X 2.1-30 GB
— 1.0
15| == ahs 30 Nodes /Hf
0.8 _
_ 1.0 m
i a
£os 062
z g
% 0-6 045
804 g
Ay
0.2
0.2
00 = 1071 100 10! 102 00
Speedup

Fig. 4: Fault-free performance summary. Summary of AHS,
DiSH, and FRACTAL 30-node fault-free speedups over Bash across
all benchmarks: FRACTAL is comparable to DISH and significantly
faster than AHS.

sics [1,2,31,42,58] and Unix50 [3,36] benchmarks comprise
scripts that extensively invoke UNIX and Linux built-in com-
mands. The NLP [6] benchmarks features scripts from a tuto-
rial focused on developing natural language processing pro-
grams using UNIX and Linux utilities. The Analytics [61,64]
benchmarks features data-processing scripts, including actual
telemetry data from mass-transit schedules during a large
metropolitan area’s COVID-19 response and multi-year tem-
perature data across the US. The Automation [49, 51, 53]
benchmarks features scripts for processing, transforming, and
compressing video and audio files, typical system adminis-
tration and network traffic analyses over log files, and aliases
for encrypting and compressing files.

Hardware & software setup: Experiments were conducted
on two clusters: (1) 30 x Cloudlab m510 nodes, each with
8-core Intel Xeon D-1548 CPU at 2.0 GHz, 64GB RAM,
256 GB NVMe, and 10-Gb connection; (2) 4 x on-premise
Raspberry Pi-5 nodes, each with a 4-core Arm Cortex A76
CPU at 2.4 GHz, 8GB RAM, ITB SSD, and 1-Gb connection.

To improve reproducibility and ease deployment, we use
Ubuntu 22.04-based Docker Swarm images on both 4 and 30
node clusters. We used Bash v5.1.16, Apache Hadoop v3.4.0,
Python v3.10.12, and Go v1.22.2.

FRACTAL is developed on top of the PaSh-JIT com-
piler [32], which includes a Python re-implementation of
libdash [22] a POSIX-compliant shell-script parser. FRAC-

Tab. 3: Fault-free performance comparison highlights. Average,
minimum, and maximum speedups over Bash for FRACTAL, DISH,
and AHS across all benchmarks.

4 Node 30 Node
System Avg Min Max Avg Min Max
FRACTAL 5.93 0.28 18.55 9.64 022 107.8
DISH 5.88 0.15 19.04 8.20 0.10 78.35
AHS 1.27 0.01 6.94 1.99 0.02 9.48

TAL adds 2K lines of Python (scheduler, monitors, executor
runtime), 1.1K lines of Go (remote pipe and services), and
0.73K lines of shell script. An additional 389 lines of Python
and 4.1K lines of shell scripts comprise the frac tool.

Correctness: Apart from careful engineering and many unit
tests, the results of over 100 repetitions across several dozen
distributed deployments and fault scenarios, over 70 scripts,
and over 200GB of inputs are identical to those of the sequen-
tial script execution, offering significant confidence about
FRACTAL'’s correct execution and recovery.

7.1 Fault-Free Execution

This section characterizes the speedup of FRACTAL over Bash
against DISH and AHS (Fig. 4).

Experiments: We execute all benchmarks on Bash, D1SH,
AHS, and FRACTAL on both clusters without injecting any
faults. While Bash, DISH, and FRACTAL execute all shell
scripts without modifications, AHS requires modifications.
Not all shell scripts are expressible in AHS; those that are
(Tab. 2, col. AHS) are used to compare AHS with FRACTAL.

Results: Fig. 5 shows the speedup of the three systems over
Bash on the two clusters (key comparisons in Tab. 3). On
the 30-node cluster, FRACTAL achieves an average speedup
of 9.64 x (max: 107.84x) compared to 8.2x (max: 78.35x)
for DISH and 1.99x (max: 9.48 x) for AHS. On the 4-node
cluster, FRACTAL achieves an average speedup of 5.93x
(max: 18.55x%), compared to DISH’s 5.88x (max: 19.04 %)
and AHS’s 1.27x (max: 6.94x).

Excluding the Unix50 and NLP benchmarks, which are
not well-suited for scaling across large clusters, FRACTAL
achieves an average speedup of 4.66x on a 4-node cluster
and 21.90x on a 30-node cluster.

Section 3’s log-analysis script (Fig. 2), part of Automation,
processes 30GB in 2140s on Pi-5 and 1524s on m510. FRAC-
TAL brings it to 436s (4.90x) on the 4-node Pi-5 cluster and
484s (3.15x) on the 30-node Cloudlab cluster.

Discussion: FRACTAL is almost always faster than Bash,
but the exact speedup achieved depends largely on the paral-
lelization characteristics of each script. Scripts whose regular

subgraphs consist of filters (e.g., grep) or folds (e.g., wc) per-
form better, as they reduce the runtime fraction used for I/O

B ahs 4 Nodes 30 Nodes
Loz | ™ dish
I fractal
o,
%
o 10°
1)
(=]
n
1071
1072
Classics Unix50 Analytics NLP Automation Classics Unix50 Analytics NLP Automation

Fig. 5: Fault-free performance comparison (Cf.§7.1). Comparison between fault-free execution speedups of AHS, DISH, and FRACTAL,
relative to single-node Bash, on the 4-node Pi-5 cluster (left) and the 30-node Cloudlab cluster (right).

classics/top-n.sh

analytics/vpd.sh

analytics/temp.sh

[
= u
- - - ®ans "
103
® ahs ahs
©»
= x
GE) x
= * fractal
x
x
102 B ahs fault % x| [y fractal
regular fault *
% merger fault fractal

10% 50% 90%10% 50% 90%10%

% completion of total execution

50% 90%

Fig. 6: Recovery comparison (Cf.§7.2). Comparison between the
FRACTAL and AHS recovery times for 3 representative scripts (left,
mid, right), with faults introduced at 10%, 50%, and 90% of the
execution—and without faults (dashed lines).

or the sequential merger . Conversely, scripts that do not filter
as much or spend more time merging results experience lower
speedups. In the limit, short-running scripts such as Unix50’s
4.sh and 34.sh experience slowdowns, as their runtime is
dominated by near-instant heads—but still remain within 1s.

FRACTAL performs better than AHS due to its whole-
program optimizations, exploiting more opportunities for
parallelism: AHS programs often contain multiple map and
reduce stages, thus leaving pipeline parallelism, data paral-
lelism, and task parallelism due to DLOpt unexploited.

FRACTAL at times performs better than DISH, as the ben-
efits from its optimizations offset the (insignificant, in fault-
free execution) costs to support fault tolerance. FRACTAL’s
asynchronous batching results in significant benefits as the
deployment grows, which explains the more pronounced dif-
ferences between FRACTAL and DISH on the 30-node cluster.
FRACTAL’s persistent subgraph outputs, aimed at avoiding
re-computation under faults, result in additional benefits by
allowing downstream components to access them: unlike
Di1SH’s TCP communication, which requires incremental—

10

and often blocking—generation due to buffer size constraints,
FRACTAL allow persistence-enabled subgraphs to operate
with effectively unbounded buffers. This in turn allows FRAC-
TAL to pre-compute and store larger execution units, offering
a significant advantage in scenarios with complex, interde-
pendent subgraphs where DISH’s buffer constraints lead to
bottlenecks. And FRACTAL fault-tolerance overheads in fault-
free execution paths are minimal—e.g., each executor in Clas-
sics adds 136B over the network and writes 1MB to disk,
imperceptible overheads relative to DISH’s fault-intolerant
execution.

7.2 Performance of Fault Recovery

We characterize FRACTAL’s fault recovery with one experi-
ment comparing FRACTAL with AHS failing at various stages
and another characterizing FRACTAL under more scenarios.

Experiments: The first experiment assesses the time re-
quired for FRACTAL and AHS to recover and successfully
complete the job on the 4-node deployment. We introduce
faults at approximately 10%, 50%, and 90% of the baseline ex-
ecution time: at 10%, AHS executes mappers and FRACTAL
executes regular subgraphs; at 90%, AHS executes reducers
and FRACTAL executes merger subgraphs. Faults are intro-
duced to an arbitrary AHS and both a base-case regular node
and a worst-case merger node (in separate runs). Combining
all these configurations with hard and soft faults to confirm
frac across systems results in prohibitive manual effort,
thus for this experiment we focus on three of the collected
benchmarks.'

The second experiment zooms into FRACTAL’s fault re-
covery under different failure scenarios on both clusters. It
employs soft faults using £rac, and all benchmarks except
NLP and Unix50 as they contain many short-running scripts.

ITotal: 3 completion percents x 3 system configs (AHS, regular ,
merger) x 2 failure modes x 5 repetitions x 3 benchmarks = 270 ex-
periments (about a week of manual effort) instead of 6,930 experiments.

Tab. 4: FRACTAL’s speedup over AHS for different failure condi-
tions and recovery scenarios. Format: avg (min—max).

Regular Recovery

7.8% (3.2-16.0%)

Merger Recovery

8.5x (3.2-15.9%)

Fail at 10%

Fail at 50% 12.1x (8.0-19.7x) 8.3x (4.8-13.9%)
Fail at 90% 16.4x (8.9-32.9%) 8.0x (4.3-14.3x%)
4 Nodes 30 Nodes
[no fault
I regular-node fault
Il merger-node fault
103
@
£
= 10?2 ‘
10!

Classics Analytics Automation Classics Analytics Automation

Fig. 7: Recovery comparison (soft faults) (Cf.§7.2). FRACTAL
execution times for three benchmark sets (Classics, Analytics, Au-
tomation) with no faults, regular faults, and merger faults on a
4-node Pi-5 cluster (left) and a 30-node Cloudlab cluster (right).

Results: Fig. 6 summarizes the first experiment. The x-
axis shows different completion percentages and the y-axis
shows the time it takes AHS and FRACTAL (both regular and
merger nodes) to recover. For context, dashed lines (constant
across the x-axis) represent the fault-free executions for AHS
(avg: 937.6s) and FRACTAL (avg: 118.9s). Under regular

faults, it takes FRACTAL 160s (134.5% vs. fault-free), 136.5s
(114.8%), and 118.8s (100.1%) to recover for each execution
percentile; under merger faults, these become 147.7s (124.2%
vs. fault-free), 200.2s (168.3%), and 244.4s (205.6%) re-
spectively. For the same percentiles, it takes AHS 1,248.8s
(133.2% vs. AHS fault-free, 780.9% vs. regular , 845.5% vs.
merger), 1,655.8s (176.6% vs. AHS fault-free, 1,213.2% vs.
regular , 727.1% vs. merger), and 1,953.4s (208.3%, 1,644.3%,
799.1%). Tab. 4 summarizes the comparison between AHS
and FRACTAL.

Fig. 7 summarizes the second experiment, showing execu-
tion times for fault-free, regular recovery, and merger recovery.
Benchmarks with fewer parallel pipelines such as Classics
and Analytics take 20.3-32.1% longer to recover from merger
(209.4-344.8s) than regular node faults (150.4-277.6s). For
other benchmarks, there is not a significant difference between
the recovery of different nodes (335.3-845.0s for regular vs.
335.7-856.5s for merger).

Discussion: Overall, the first experiment shows that FRAC-
TAL recovers at a fraction (6.08—12.8%) of AHS’s recovery
time. Most benefits are due to its selective re-execution of

11

affected-only portions, while still enjoying all parallelization
benefits (§7.1) during re-execution.

Failures that occur later generally result in longer recovery
times (Fig. 6), as they require more upstream subgraphs to be
re-executed—except for FRACTAL’s regular failures, whose
recovery does not interfere with end-to-end performance due
to their completion. This non-interference of regular nodes
will be important in practical deployments, as we have found
that the vast majority of nodes in a distributed execution are

regular nodes—thus have significantly higher probability to
be affected by a fault in the underlying infrastructure.

As this experiment compares hard faults introduced manu-
ally and soft faults injected by £rac, it confirms that the two
modes result in identical executions across 270 experiments—
but £rac completes experiments at about 2-5% of the hard-
fault time, and without the mental overhead of keeping manual
track of various experiment timepoints.

Diving into various types of recovery (Fig. 7) indicates
that the pipeline-to-node ratio of pipelines is correlated with
merger -to- regular node recovery performance. This observa-
tion is intuitive for two reasons. First, benchmarks that rely
on a single pipeline—such as Classics and Analytics—
experience longer recovery times from merger faults than
from regular faults, since regular faults involve re-executing
fewer subgraphs. Second, benchmarks with many pipelines
(e.g., Automation) are indifferent to merger and regular re-
covery times: having a larger number of merger subgraphs
distributes the workload evenly, effectively making every
node a merger node and neutralizing the impact type.

7.3 Microbenchmark: Dynamic Persistence

This experiment zooms into the benefits of dynamically per-
sisting subgraph outputs, which accelerate fault recovery but
add overhead to fault-free execution.

Experiments: We explore output-persistence trade-offs us-
ing two benchmark sets under different fault conditions and
with both persistence options (enabled and disabled): NLP (no
faults) features many parallel pipelines, each using a small
input (<128MB); Analytics (merger faults) features long-
running regular (upstream) subgraphs.

Results: Fig. 8 compares the runtime between three output-
persistence options. For fault-free NLP (resp. faulty Ana-
Iytics) suite, enabling (resp. disabling) persistence results to
21.0% (resp. 38.7%) overhead on average.

Discussion: Enabling output persistence for short-running
workloads introduces significant overheads and for relatively
small benefits—as regular and merger subgraphs tend to be
co-located, thus becoming unavailable upon faults and neces-
sitating re-execution irrespective of persistence. Failed long-
running scripts see significant benefits from output persis-
tence, as they avoid significant upstream re-execution. FRAC-
TAL first-order workload heuristics—e. ., size of DFG graphs,

= enabled ¥
disabled 4x10?%
102 dynamic "
3x10?
©) ©)
L]
£ £
=] 2.5
i 2x10% 3
L] -
- 7% - .
: n 7 : u n ®
- * L] L]
) 4102
NLP Analytics

Fig. 8: Microbenchmark: dynamic persistence (Cf.§7.3). Fault-
free NLP benchmark (left) and fault-injected Analytics benchmark
(right) with dynamic persistence enabled, disabled, and set dynami-
cally by FRACTAL’s heuristics.

input sizes—decide whether to enable persistence for the vast
majority of these benchmarks.

8 Related Work

FRACTAL is related to a large body of work in distributed
shells and shell-related utilities, distributed computing frame-
works, and language-based distributed systems.

Distributed shells and utilities: Several command-line
job-scheduling tools allow distributing workloads on Unix
systems—e.g., gsub for the Sun Grid Engine [19] and
parallel for GNU Parallel [56]—but their invocation re-
quires careful manual orchestration and does not come with
fault tolerance built-in. Slurm [65], a workload manager for
distributing batch jobs across computing clusters, provides pe-
riodic check-pointing for later resumption using DMTCP [33].
This mechanism focuses only on recovering Slurm-visible
state, does not support complex commands, and fails to ac-
count for thorny shell semantics such as append (§3).

Shells like Rc [12], Dgsh [54], and gsh [41] offer scalable,
often non-linear and acyclic, extensions to Unix pipelines but
require manual rewriting and do not tolerate failures.

Recent systems offering automated parallelization and dis-
tribution of shell programs such as PaSh [32,62], POSH [49],
and DISH [47] optimize the execution of shell programs by
offloading and scaling out distribution automatically. Similar
to FRACTAL, they employ a series of techniques for automat-
ically compiling scripts to an internal representation which
they then parallelize and distribute, but different from FRAC-
TAL tolerate no failures.

Distributed computing frameworks: FRACTAL combines
elements from distributed batching and streaming systems [10,
43,45,46,48,55,63, 66]. These systems offer the ability
to tolerate failures, often by tracking lineage similarly to
FRACTAL [43,66], but require their users to (re-)implement

12

their programs using the abstractions these systems provide.
These systems do not support the black-box nature, runtime
expansion behaviors, and arbitrary side effects pervasive in
the commands typically present in shell programs.

Hadoop Streaming [25] and Dryad Nebula [28] are unusual
in that they allow the use of black-box components such as
Unix commands. However, they do not target the semantics
of the shell and thus require users to manually port their shell
programs—often facing the difficulty or inability to express
entire classes of shell programs as FRACTAL’s evaluation con-
firms. FRACTAL provides automated scale-out of unmodified
shell scripts, supports the shell’s dynamic-expansion features,
and offers efficient fault tolerance by tracking lineage.

Other cloud offerings: Prior work on VM- and container-
level replication has used check-pointing [8,9, 13, 34,40] to
tolerate failures. Contrary to FRACTAL, these approaches
leverage logging, require infrastructure support, and lack a
logical understanding of the workload.

Serverless platforms have started introducing stateful oper-
ations [30,39,67] and thus fault tolerance, through a combina-
tion of logging and check-pointing. Different from FRACTAL,
these systems do not support shell scripts or arbitrary black
box commands—users need to (re)write their scripts in the
abstractions provided by these systems to see benefits.

The gg system [16] supports scaling black box commands
to serverless functions. In contrast to FRACTAL, gg does not
support pipeline parallelism and attempts full executions via
a re-try mechanism when faults occur.

9 Conclusion

Transparent fault tolerance is a sine qua non for scalable
shell-script distribution: without it, unmodified POSIX scripts
cannot reliably handle the black-box binaries, ad-hoc pipes,
non-idempotent side effects, and dynamic control flow that
characterize real-world workflows.

FRACTAL is the first system that offers fault-tolerant
shell-script distribution by separating recoverable from side-
effectful regions. It performs lightweight instrumentation to
record byte-level progress and enforce exactly-once semantics.
By employing precise dependency and progress tracking at
the subgraph level, it offer sound and efficient fault recovery.

Acknowledgements: We thank the NSDI’26 reviewers for
their feedback; our shepherd, Eric Eide, for his guidance; the
NSDI’26 Artifact reviewers for their time; and the Brown
CS2952R (Fall’24) participants for their input on several it-
erations of this paper. This material is based upon research
supported by NSF awards CNS-2247687 and CNS-2312346;
DARPA contract no. HR001124C0486; a Fall’24 Amazon
Research Award; a Google ML-and-Systems Junior Faculty
award; a seed grant from Brown University’s Data Science
Institute; and a BrownCS Faculty Innovation Award.

References

(1]

(2]

(3]

(4]

(51

(6]

(7]

(8]

(9]

[10]

[11]

[12]

Jon Bentley. Programming pearls: a spelling checker.
Commun. ACM, 28(5):456—462, may 1985.

Jon Bentley, Don Knuth, and Doug Mcllroy. Pro-
gramming pearls: a literate program. Commun. ACM,
29(6):471-483, jun 1986.

Pawan Bhandari. Solutions to unixgame.io, 2020. Ac-
cessed: 2020-04-14.

Paris Carbone, Stephan Ewen, Gyula Fora, Seif Haridi,
Stefan Richter, and Kostas Tzoumas. State management
in apache flink®: consistent stateful distributed stream
processing. Proc. VLDB Endow., 10(12):1718-1729,
aug 2017.

Raul Castro Fernandez, Matteo Migliavacca, Evangelia
Kalyvianaki, and Peter Pietzuch. Integrating scale out
and fault tolerance in stream processing using operator
state management. In Proceedings of the 2013 ACM
SIGMOD International Conference on Management of
Data, SIGMOD ’13, pages 725-736, New York, NY,
USA, 2013. Association for Computing Machinery.

Kenneth Ward Church. Unix™ for poets, 1994. Notes
of a course from the European Summer School on Lan-
guage and Speech Communication, Corpus Based Meth-
ods.

CRIU community. Checkpoint/restart in userspace
(criu). https://criu.org/, 2019. Accessed: April
2025.

Heming Cui, Rui Gu, Cheng Liu, Tianyu Chen, and
Junfeng Yang. Paxos made transparent. In Proceedings
of the 25th Symposium on Operating Systems Principles,
pages 105-120, 2015.

Brendan Cully, Geoffrey Lefebvre, Dutch Meyer, Mike
Feeley, Norm Hutchinson, and Andrew Warfield. Re-
mus: High availability via asynchronous virtual machine
replication. In Proceedings of the 5th USENIX sympo-
sium on networked systems design and implementation,
pages 161-174. San Francisco, 2008.

Jeffrey Dean and Sanjay Ghemawat. Mapreduce: sim-
plified data processing on large clusters. Communica-
tions of the ACM, 51(1):107-113, 2008.

Jeffrey Dean and Sanjay Ghemawat. Mapreduce: a
flexible data processing tool. Commun. ACM, 53(1):72—
77, jan 2010.

Tom Duff. Rc—a shell for plan 9 and unix systems.
AUUGN, 12(1):75, 1990.

13

[13]

[14]

[15]

[16]

(17]

(18]

[19]

(20]

(21]

(22]

(23]

(24]

George W Dunlap, Dominic G Lucchetti, Michael A
Fetterman, and Peter M Chen. Execution replay of
multiprocessor virtual machines. In Proceedings of the
fourth ACM SIGPLAN/SIGOPS international confer-
ence on Virtual execution environments, pages 121-130,
2008.

Johan Eveleens and Chris Verhoef. The rise and fall of
the chaos report figures. IEEE software, 27(1):30-36,
2009.

Bent Flyvbjerg and Alexander Budzier. Why your it
project might be riskier than you think. arXiv preprint
arXiv:1304.0265, 2013.

Sadjad Fouladi, Francisco Romero, Dan Iter, Qian Li,
Shuvo Chatterjee, Christos Kozyrakis, Matei Zaharia,
and Keith Winstein. From laptop to lambda: Outsourc-
ing everyday jobs to thousands of transient functional
containers. In 2019 USENIX annual technical confer-
ence (USENIX ATC 19), pages 475488, 2019.

Aeleen Frisch. Essential system administration: Tools
and techniques for linux and unix administration. "
O’Reilly Media, Inc.", 2002.

Ishaan Gandhi and Anshula Gandhi. Lightening the
cognitive load of shell programming. PLATEAU 2020,
2020.

Wolfgang Gentzsch. Sun grid engine: Towards creating
a compute power grid. In Proceedings First IEEE/ACM
International Symposium on Cluster Computing and the
Grid, pages 35-36. IEEE, 2001.

GitHub. The state of the octoverse 2024: The most pop-
ular programming languages, 2024. Accessed: 2024-
10-31.

Michael Greenberg. Word expansion supports posix
shell interactivity. In Companion Proceedings of the
2nd International Conference on the Art, Science, and
Engineering of Programming, pages 153-160, 2018.

Michael Greenberg. libdash. https://github.com/m
gree/libdash, 2019. [Online; accessed November 22,
2024].

Michael Greenberg and Austin J Blatt. Executable
formal semantics for the posix shell. Proceedings of
the ACM on Programming Languages, 4(POPL):1-30,
2019.

Michael Greenberg, Konstantinos Kallas, and Nikos
Vasilakis. Unix shell programming: the next 50 years.
In Proceedings of the Workshop on Hot Topics in Oper-
ating Systems, pages 104-111, 2021.

https://criu.org/
https://github.com/mgree/libdash
https://github.com/mgree/libdash

[25]

[26]

[27]

(28]

[29]

[30]

[31]

(32]

[33]

[34]

[35]

Hadoop. Hadoop streaming. https://hadoop.apa
che.org/docs/r3.4.0/hadoop-streaming/Hadoo
pStreaming.html, 2024. [Online; accessed June 13,
2024].

Saurav Haloi. Apache zookeeper essentials. Packt

Publishing Ltd, 2015.

Jordan Henkel, Christian Bird, Shuvendu K Labhiri, and
Thomas Reps. Learning from, understanding, and sup-
porting devops artifacts for docker. In Proceedings of
the ACM/IEEE 42nd international conference on soft-
ware engineering, pages 38—49, 2020.

Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell,
and Dennis Fetterly. Dryad: distributed data-parallel
programs from sequential building blocks. In Pro-
ceedings of the 2nd ACM SIGOPS/EuroSys European
conference on computer systems 2007, pages 59-72,
2007.

Data science at the command line:
" O’Reilly

Jeroen Janssens.
Facing the future with time-tested tools.
Media, Inc.", 2014.

Zhipeng Jia and Emmett Witchel. Boki: Stateful server-
less computing with shared logs. In Proceedings of the
ACM SIGOPS 28th Symposium on Operating Systems
Principles, pages 691-707, 2021.

Dan Jurafsky. Unix for poets, 2017. Accessed: 2024-
09-16.

Konstantinos Kallas, Tammam Mustafa, Jan Bielak,
Dimitris Karnikis, Thurston H.Y. Dang, Michael Green-
berg, and Nikos Vasilakis. Practically correct, just-in-
time shell script parallelization. In /6th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI 22), pages 1-18. USENIX Association, July
2022.

Gene Kapadia, Jason Ansel, Kapil Arya, Charles Guo,
Daniel Maze, Mihir Modi, Cameron Musco, Alexey
Lory, and Gene Cooperman. Dmtcp: Distributed mul-
tithreaded checkpointing. https://dmtcp.sourcefo
rge.io/, 2024. Accessed: 2024-11-29.

Manos Kapritsos, Yang Wang, Vivien Quema, Allen
Clement, Lorenzo Alvisi, and Mike Dahlin. All
about eve:{Execute-Verify} replication for {Multi-
Core} servers. In 10th USENIX Symposium on Op-
erating Systems Design and Implementation (OSDI 12),
pages 237-250, 2012.

Jay Kreps, Neha Narkhede, Jun Rao, et al. Kafka: A
distributed messaging system for log processing. In Pro-
ceedings of the NetDB, volume 11, pages 1-7. Athens,
Greece, 2011.

14

(36]

(37]

(38]

[39]

(40]

(41]

[42]

[43]

[44]

[45]

[46]

Nokia Bell Labs. The unix game—solve puzzles using
unix pipes, 2019. Accessed: 2020-03-05.

Haoyuan Li. Alluxio: A virtual distributed file system.
University of California, Berkeley, 2018.

Georgios Liargkovas, Konstantinos Kallas, Michael
Greenberg, and Nikos Vasilakis. Executing shell scripts
in the wrong order, correctly. In Proceedings of the 19th
Workshop on Hot Topics in Operating Systems, pages
103-109, 2023.

David H Liu, Amit Levy, Shadi Noghabi, and Sebas-
tian Burckhardt. Doing more with less: Orchestrating
serverless applications without an orchestrator. In 20th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 23), pages 1505-1519, 2023.

Haikun Liu, Hai Jin, Xiaofei Liao, Liting Hu, and Chen
Yu. Live migration of virtual machine based on full
system trace and replay. In Proceedings of the 18th
ACM international symposium on High performance
distributed computing, pages 101-110, 2009.

Chris McDonald and Trevor I Dix. Support for graphs of
processes in a command interpreter. Software: Practice
and Experience, 18(10):1011-1016, 1988.

Malcolm D. Mcllroy, Elliot N. Pinson, and Berkley A.
Tague. Unix time-sharing system: Foreword. Bell
System Technical Journal, 57(6):1899-1904, 1978.

Philipp Moritz, Robert Nishihara, Stephanie Wang,
Alexey Tumanov, Richard Liaw, Eric Liang, Melih Eli-
bol, Zongheng Yang, William Paul, Michael I Jordan,
etal. Ray: A distributed framework for emerging { AI}
applications. In /3th USENIX symposium on operating
systems design and implementation (OSDI 18), pages
561-577, 2018.

Derek G. Murray, Frank McSherry, Rebecca Isaacs,
Michael Isard, Paul Barham, and Martin Abadi. Na-
iad: a timely dataflow system. In Proceedings of the
Twenty-Fourth ACM Symposium on Operating Systems
Principles, SOSP ’13, pages 439-455, New York, NY,
USA, 2013. Association for Computing Machinery.

Derek G Murray, Frank McSherry, Rebecca Isaacs,
Michael Isard, Paul Barham, and Martin Abadi. Na-
iad: a timely dataflow system. In Proceedings of the
Twenty-Fourth ACM Symposium on Operating Systems
Principles, pages 439455, 2013.

Derek G Murray, Malte Schwarzkopf, Christopher
Smowton, Steven Smith, Anil Madhavapeddy, and
Steven Hand. {CIEL}: A universal execution engine
for distributed {Data-Flow} computing. In 8th USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI 11), 2011.

https://hadoop.apache.org/docs/r3.4.0/hadoop-streaming/HadoopStreaming.html
https://hadoop.apache.org/docs/r3.4.0/hadoop-streaming/HadoopStreaming.html
https://hadoop.apache.org/docs/r3.4.0/hadoop-streaming/HadoopStreaming.html
https://dmtcp.sourceforge.io/
https://dmtcp.sourceforge.io/

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

Tammam Mustafa, Konstantinos Kallas, Pratyush Das,
and Nikos Vasilakis. DiSh: Dynamic Shell-Script dis-
tribution. In 20th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 23), pages
341-356, Boston, MA, April 2023. USENIX Associa-
tion.

Russell Power and Jinyang Li. Piccolo: Building fast,
distributed programs with partitioned tables. In 9th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 10), 2010.

Deepti Raghavan, Sadjad Fouladi, Philip Levis, and
Matei Zaharia. POSH: A data-aware shell. In 2020
USENIX Annual Technical Conference (USENIX ATC
20), pages 617-631, 2020.

Arnold Robbins and Nelson HF Beebe. Classic Shell
Scripting: Hidden Commands that Unlock the Power of
Unix. " O’Reilly Media, Inc.", 2005.

Michael Schroder and Jiirgen Cito. An empirical in-
vestigation of command-line customization. Empirical
Software Engineering, 27(2), December 2021.

Konstantin Shvachko, Hairong Kuang, Sanjay Radia,
and Robert Chansler. The hadoop distributed file system.
In 2010 IEEE 26th Symposium on Mass Storage Systems
and Technologies (MSST), pages 1-10, 2010.

Diomidis Spinellis and Marios Fragkoulis. Extending
unix pipelines to dags. IEEE Transactions on Comput-
ers, 66(9):1547-1561, 2017.

Diomidis Spinellis and Marios Fragkoulis. Extending
unix pipelines to dags. IEEE Transactions on Comput-
ers, 66(9):1547-1561, 2017.

Craig A Stewart, Timothy M Cockerill, Ian Foster,
David Hancock, Nirav Merchant, Edwin Skidmore,
Daniel Stanzione, James Taylor, Steven Tuecke, George
Turner, et al. Jetstream: a self-provisioned, scalable
science and engineering cloud environment. In Pro-
ceedings of the 2015 XSEDE Conference: Scientific
Advancements Enabled by Enhanced Cyberinfrastruc-
ture, pages 1-8, 2015.

Ole Tange. Gnu parallel-the command-line power tool.
Usenix Mag, 36(1):42, 2011.

Dave Taylor. Wicked Cool Shell Scripts: 101 Scripts for
Linux, Mac OS X, and Unix Systems. No Starch Press,
2004.

Dave Taylor. Wicked Cool Shell Scripts: 101 Scripts for
Linux, Mac OS X, and Unix Systems. No Starch Press,
USA, 2004.

15

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

The Free Software Foundation. Bash shell, 2009. [On-
line; accessed 30-October-2024].

Ankit Toshniwal, Siddarth Taneja, Amit Shukla, Karthik
Ramasamy, Jignesh M Patel, Sanjeev Kulkarni, Jason
Jackson, Krishna Gade, Maosong Fu, Jake Donham,
et al. Storm@ twitter. In Proceedings of the 2014 ACM
SIGMOD international conference on Management of
data, pages 147-156, 2014.

Eleftheria Tsaliki and Diomidis Spinellis. The real
statistics of buses in athens, 2021.
Nikos Vasilakis, Konstantinos Kallas, Konstanti-

nos Mamouras, Achilles Benetopoulos, and Lazar
Cvetkovi¢. Pash: Light-touch data-parallel shell pro-
cessing. In Proceedings of the Sixteenth European Con-
ference on Computer Systems, pages 49—66, New York,
NY, USA, 2021. Association for Computing Machinery.

Tom White. Hadoop: The definitive guide. " O’Reilly
Media, Inc.", 2012.

Tom White. Hadoop: The Definitive Guide. O’Reilly
Media, Inc., 4th edition, 2015.

Andy B Yoo, Morris A Jette, and Mark Grondona.
Slurm: Simple linux utility for resource management.
In Workshop on job scheduling strategies for parallel
processing, pages 44—60. Springer, 2003.

Matei Zaharia, Mosharaf Chowdhury, Tathagata Das,
Ankur Dave, Justin Ma, Murphy McCauley, Michael J.
Franklin, Scott Shenker, and Ion Stoica. Resilient
distributed datasets: a fault-tolerant abstraction for in-
memory cluster computing. In Proceedings of the
9th USENIX Conference on Networked Systems De-
sign and Implementation, NSDI’ 12, page 2, USA, 2012.
USENIX Association.

Haoran Zhang, Adney Cardoza, Peter Baile Chen, Se-
bastian Angel, and Vincent Liu. Fault-tolerant and
transactional stateful serverless workflows. In I4th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 20), pages 1187-1204, 2020.

	Introduction
	Fault Tolerance for Shell Script
	Desiderata
	Existing Approaches
	Our approach

	Example and Overview
	System Design
	Fault Recovery in Fractal
	Fractal Components

	Optimizations
	Fault Injection
	Evaluation
	Fault-Free Execution
	Performance of Fault Recovery
	Microbenchmark: Dynamic Persistence

	Related Work
	Conclusion

