
Themis: A Secure Decentralized Framework
for Microservice Interaction in Serverless Computing

Angeliki Aktypi
Department of Computer Science

University of Oxford
Oxford, U.K

angeliki.aktypi@cs.ox.ac.uk

Dimitris Karnikis
Aarno Labs

Cambridge, U.S.
dkarnikis@aarno-labs.com

Nikos Vasilakis
Computer Science & Artificial Intelligence Laboratory

Massachusetts Institute of Technology
Cambridge, U.S.
nikos@vasilak.is

Kasper Rasmussen
Department of Computer Science

University of Oxford
Oxford, U.K.

kasper.rasmussen@cs.ox.ac.uk

ABSTRACT

In serverless computing, applications are composed of stand-alone
microservices that are invoked and scale up independently. Peer-
to-peer protocols can be used to enable decentralized communica-
tion among the services that compose each application. This paper
presents Themis, a framework for secure service-to-service interac-
tion targeting these environments and the underlying service mesh
architectures. Themis builds on a notion of decentralized identity
management to allow confidential and authenticated service-to-
service interaction without the need for a centralized certificate
authority. Themis adopts a layered architecture. Its lower layer
forms a core communication protocol pair that offers strong se-
curity guarantees without depending on a centralized point of
authority. Building on this pair, an upper layer provides a series of
actions related to communication and identifier management—e.g.,
store, find, and join. This paper analyzes the security properties
of Themis’s protocol suite and shows how it provides a decen-
tralized and flexible communication platform. The evaluation of
our Themis prototype targeting serverless applications written
in JavaScript shows that these security benefits come with small
runtime latency and throughput overheads, and modest startup
overheads.

CCS CONCEPTS

• Security and privacy → Security protocols; Key manage-

ment.

KEYWORDS

DHT; Security; Serverless; Service mesh.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ARES 2022, August 23–26, 2022, Vienna, Austria
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9670-7/22/08. . . $15.00
https://doi.org/10.1145/3538969.3538983

ACM Reference Format:

Angeliki Aktypi, Dimitris Karnikis, Nikos Vasilakis, and Kasper Rasmussen.
2022. Themis: A Secure Decentralized Framework for Microservice Inter-
action in Serverless Computing. In The 17th International Conference on
Availability, Reliability and Security (ARES 2022), August 23–26, 2022, Vi-
enna, Austria. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/
3538969.3538983

1 INTRODUCTION

Serverless computing [3, 4, 9, 26, 29] is a recent approach to cloud
computing that simplifies the development and use of cloud re-
sources. Serverless applications are comprised of stand-alone mi-
croservices that interact with each other in a peer-to-peer (P2P)
fashion: each microservice is responsible for only a small fraction
of the application functionality, and can thus be invoked, be passed
parameters, and scale-up independently. A service mesh [22, 33] is
a dedicated infrastructure layer that allows communication among
microservices, which can belong to different deployment clusters
of container platforms, e.g., Kubernetes [11].

Existing service meshes enable microservice communication by
adopting a centralized architecture—microservices can authenticate
and discover each other by communicating with central registries.
Relying on central registries to administrate the microservice com-
munication provides a clear and straightforward administration.
However, it makes it challenging to support open cloud platforms
creating vendor lock-in issues. Allowing microservices to commu-
nicate in an ad-hoc manner can facilitate the incorporation of ma-
chines/services that belong to different federated domains, whereas
the lack of dependency on a central communication link can allow
the deployment of serverless applications in dynamic edge, e.g., IoT,
and volatile, e.g., disaster zones, environments [34].

This work presents Themis, a secure general-purpose abstraction
overlay suitable to any application that demands point-to-point
communication but particularly tailored to the service mesh infras-
tructures underpinning today’s serverless environments. Themis
is a framework built on a notion of decentralized identity man-
agement to allow secure service-to-service interaction when the
connection to a central registry might not always be available,
addressing underlined design flaws in the security of state-of-art
service meshes [25].

https://doi.org/10.1145/3538969.3538983
https://doi.org/10.1145/3538969.3538983
https://doi.org/10.1145/3538969.3538983

Themis’s design achieves security, extensibility, and service dis-
covery in microservice communication featuring a two-layer pro-
tocol architecture. Its lower layer consists of two protocols that
provide authenticity, confidentiality and integrity to the communi-
cated messages. Its upper layer builds on the previous protocol pairs
to provide a series of P2P communication and identifier manage-
ment actions. We prove the low-level protocols secure in a strong
adversary model, and discuss the resulting security properties of
the upper level protocols. We further describe how Themis can
serve as a building platform for a service mesh application.

Our Themis prototype leverages the ubiquity of JavaScript pow-
ered runtime environments in serverless platforms, and is available
to modern applications as an open-source library. We evaluate
Themis on eight end-to-end serverless applications, as well as a
number of microbenchmarks targeting standalone serverless op-
erations. The key take-away from the evaluation is that the per-
formance overhead of Themis (compared to an insecure baseline
implementation) is minimal, while providing the security benefits
described earlier. Our contributions can be summarized as follows:

• Security Protocols: We propose two novel protocols for key agree-
ment and subsequent secure communication that leverage the
self-certifying identities of the participating nodes. This way we
do not depend on a centralized root of trust like a traditional
certificate authority.

• Model and Proofs: We provide a detailed security analysis of the
security guarantees of our protocols. Specifically, we prove that
they achieve authentication, confidentiality and integrity for all
the exchanged messages.

• High-level Operations: We specify five key operations, i.e., find,
store, join, update and leave that nodes execute to maintain
a structured overlay organization. Leveraging these building
blocks Themis achieves service discovery and extensibility in
a fully decentralized manner. We also elaborate on the security
properties that hold against several common classes of attacks
that target this P2P structure.

• Open-source Implementation: We implement Themis in about
3.3K lines of JavaScript, as a pluggable application library called
Themis and built atopQuickJS—a small and embeddable Javascript
engine. The Themis library takes care of object initialization, com-
munication, and serialization, leveraging a JavaScript port of the
NaCl Networking and Cryptography library. We provide an open-
source release of Themis’s implementation at github.com/atlas-
runtime/themis.

• Empirical Evaluation: We evaluate Themis’s characteristics across
eight serverless applications as well as targeting microbench-
marks scaling between 1–1,000 nodes. Themis’s security benefits
come at a small-to-imperceptible cost in terms of runtime perfor-
mance and only modest cost in terms of lines of code changed.

2 RELATEDWORK

Applying a P2P architecture to enable secure service-to-service
communication in serverless environments is a relatively new area
of research. Existing service meshes [2, 5, 7, 8, 10] follow a central-
ized architecture, where dedicated registries forming the control
plane are responsible for coordinating the microservice proxies of
the data plane. Consul [23] adopts a more decentralized approach by

using the Raft consensus protocol to distribute cluster state that is
centrally maintained by the quorum leader node. The work in [34]
also relies on service registry to store data regarding registered ser-
vices; the registry acts as a DNS server resolving human-readable
names to services hashes that can be queried on top of a Distributed
Hash Table (DHT) structure. Themis provides a holistic decentral-
ized design where the information concerning the nodes and the
application-specific data they provide, e.g., microservices, are stored
on the DHT nodes themselves obliviating the need for a service
registry. However, rather than having the DHT table store the data
itself such as IPFS [15], it only stores the pointer(s), i.e., the node
identifier(s)) of the node(s) that claims to be holder(s) for that data.
As such, Themis avoids several challenges at the cost of an ad-
ditional indirection—e.g., value staleness, continuous or infinite
streams, and redistribution over heterogeneous deployments.

A previous generation P2P architectures addressed scalability
problems outside the serverless computing domain—e.g., Chord [45,
49], Kademlia [37], Can [43], Tapestry [50]. The distributed nature
of these architectures exposes them inherently to important at-
tacks [46, 47], and thus many extensions provide authentication
in distributed systems using a single root of trust [1, 20, 21] or
identity-based cryptography [19, 27, 28, 35]. Other works try to
overcome single points of failure by using threshold cryptogra-
phy [12, 44], consensus protocols [40, 41] and reputation mecha-
nisms [18, 24]. Themis focuses on decentralized identity manage-
ment, where nodes can directly authenticate themselves on their
own without being previously paired with another entity; thus,
Themis does not necessitate the support of a public key infras-
tructure (PKI) as done in QUIC [36] and mTLS [32]—the protocol
adopted by the majority of service meshes.

To provide authentication Themis uses self-certifying identi-
ties [38] by constructing the identity that peers have in the overlay
from their public key. This obliviates the need for a certificate to
associate the identity that a peer has with a specific public key.
The certificate can be issued by a Certificate Authority (CA) or the
peer itself, i.e., self-signed certificates, as done in [48] and in [39]—
that embeds in the initial handshake a signed identity payload to
authenticate the static public key of the Noise_XX [31] protocol.
Self-certifying identities have been used in the past in P2P architec-
tures [13, 42] to prevent eclipse and sybil attacks. Themis focuses
on different problems—confidentiality, message integrity, and mes-
sage authentication/linkability—complementing these works rather
than competing against them. In SECIO [16], an earlier secure
transport protocol for IPFS and libp2p [6], peers use self-certifying
identities without relying on certificates. Themis provides stronger
security guarantees than SECIO, e.g., allowing key confirmation
and resisting against identity-misbinding attacks.

3 THEMIS ARCHITECTURE

This section elaborates on Themis’s design and gives a high-level
description of its architecture.

3.1 Design Goals

Themis is a secure P2P communication scheme, designed to suit
the implementation of a large-scale, multi-cloud, and open service
mesh, by achieving:

2

https://github.com/atlas-runtime/themis
https://github.com/atlas-runtime/themis

Security: The multi-tenant nature of a service mesh, i.e., allow-
ing multiple applications to share resources of the same machines
simultaneously, demands fine-grained security guarantees. The se-
curity mechanism in place must allow for confidentiality, i.e., that
the data being transferred among two parties remains hidden, so
as services coexisting on the same network cannot eavesdrop on
others communication. To realize an open service mesh in which
different providers can take part, the joining process must be re-
laxed from setup burdens such as communicating with a central
authority registry. However, easing the joining procedure allows
both malicious and honest nodes to coexist on the same network.
For this reason, the service mesh must provide strong accountability
for the exchanged messages so as attribution of malicious behavior
to be performed. To achieve accountability, both authentication,
i.e., the parties exchanging information are who they claim to be
and integrity, i.e., the data being transferred has not been forged
or tampered with, must be guaranteed. These can be the basic un-
derneath blocks for other security primitives to be built on top, e.g.,
authorization.

Extensibility: Each service in a serverless application is created
and killed independently, based on the usage demand. A service
mesh needs to inherently provide scalability to serve the high repli-
cation of services. To avoid vendors lock-in issues and privacy
concerns, service meshes must be open, i.e., allowing instances to
be added and removed flexibly and quickly, and be hosted on both
commercial clouds and client in-house premises.

Service Discovery: Service instances must be able to discover
each other based on the business logic they implement. Instances
can implement different parts of the workflow of the same applica-
tion or can provide observability functionalities to the serverless
infrastructure by collecting metrics of the internal state of the sys-
tem. Deploying the discoverymechanism in a centralized way limits
the resilience of the serverless infrastructure against a region out-
age and restricts the nature of serverless applications, e.g., disaster
management. A decentralized service discovering mechanism must
allow inherently load balancing among the available instances that
implement the same service, fault tolerance by allowing instances
to redirect their request to a service instance with a healthy state,
and canary release for testing new versions of services.

3.2 Overview

Themis’s design features a two-layer protocol architecture. The first,
lower layer described in Section 5, forms a core communication pro-
tocol pair that offers confidentiality, integrity, and authentication
without depending on a centralized point of authority. This layer
is comprised of two protocols: an authenticated key agreement
protocol for setting up a secure communication channel between
two nodes, and a protocol for direct communication between the
two authenticated nodes. The key agreement protocol is somewhat
comparable to the mTLS handshake protocol; the communication
protocol leverages symmetric cryptographic primitives to ensure
secure communication. Combined, the two protocols provide spe-
cific security guarantees to the communication channel established
between two nodes, which we prove in Section 5.2. They effec-
tively bind a symmetric key to a self-certifying identity so that any

Figure 1: Themis sits on top of the transport layer, organiz-

ing peers on a ring topology.

message sent over the secure channel that the key enables can be
cryptography bound to an identity on the network.

The second, upper layer described in Section 6, builds on the
previous protocol pair to provide a series of actions related to iden-
tifier management. Examples of actions include join, store, and
find allow nodes to associate and manage the mapping between
identifiers—both ones corresponding to nodes and ones correspond-
ing to objects. This layer leverages the guarantees provided by the
lower layer to enhance security properties on nodes’ P2P communi-
cation underpinning a fully decentralized serverless infrastructure;
we analyze these properties in Section 6.2. This layer also incor-
porates several tunable parameters that depend on deployment
specifics. For example, a redundancy factor allows several copies
of a single identifier-to-node mapping; a freshness factor allows
the network to self-calibrate mapping staleness. We present how
these parameters can be used to provide a complete service mesh
architecture in Section 7.

4 SYSTEM & ADVERSARY MODEL

In this section, we provide the system and adversary model of
Themis. While Themis design was motivated by the service mesh
application, it is equally applicable to any decentralized application.

4.1 System Model

Our system consists of a set of nodes that interact to exchange
application-specific data. Each node can represent a machine or a
service that needs to interact, e.g., to build a serverless application.
Each node has an identifier that uniquely identifies them in the
system, and they can each store (and search for) data-objects that
represent a specific capability or piece of data that they wish to
make public to other members of the network. We assume that
nodes know the name of the data they are looking for. Themis is
agnostic to how data is named. Nodes may be physically located
(and controlled by) different operators, however any node can com-
municate with any other node.

3

Themis follows a layered architecture depicted in Figure 1, which
consists of a lower and an upper layer described in Sections 5
and 6, respectively. In Themis nodes can be grouped into different
networks distinguished by a network identifier. To join a network,
nodes need to communicate with a member of that network in
order to bootstrap communication. Each node generates and stores
a cryptographic key-pair which represents the identity of that node
within Themis. This is needed to allow nodes to be authenticated,
and to link messages coming from the same node. We assume that
each node has sufficient storage space to dedicate to keeping state
for the overlay network.

4.2 Adversary Model

Themis considers a Dolev-Yao attacker who fully controls the com-
munication channel but he does not have physical access to the
machines, nor he can break any of the security properties of the
underlying cryptographic schemes, i.e., hashing, signature and mac,
used by the protocols. His goals are to break the confidentiality,
the integrity and the authentication of the messages that services
exchanged over Themis. Like other transport layer architectures,
e.g., mTLS, Themis does not address attacks that aim to disrupt the
communication between the nodes—e.g., denial of service (DoS) and
jamming. Themis allows machines to control multiple identities
on the overlay; this is a design choice to allow applications to use
services that are hosted by the same physical machine. Themis
does not specify a specific authorization mechanism; its goal is to
establish the service identities and enable them to establish a secure
channel for future communication. Its strong authentication, in-
tegrity, and confidentiality guarantees allow programmers to build
additional security properties, e.g., access control policies, on top
based on each application’s needs. Every service is rendered ac-
countable for its activity. In such a way, malicious or faulty services
can be identified and removed.

5 THEMIS’S LOW-LEVEL ARCHITECTURE

In this section we initially describe the protocols that constitute
Themis’s low layer and we further analyze the security guarantees
they provide.

5.1 Low-Level Protocols

All messages between nodes in the network are sent over secure
channels established by our two custom protocols described in this
section. The first protocol provides authenticated key agreement
between any two network identities without relying on a central-
ized PKI. The second protocol uses the established symmetric key
to provide message integrity, confidentiality, and authentication.

5.1.1 Authenticated Key Agreement. Authentication in this context
means that all messages can be attributed to exactly one identity.
The identity of a node is the hash of its public key and the name of
the network. That means that Alice can freely pick a public/private
key-pair (PKA, SKA) but the hash of the public key determines
Alice’s identity on the network netid , i.e., Alice = h(PKA, netid).

The protocol is shown in Figure 2. Alice picks a Diffie–Hellman
exponent a and a fresh nonceNA. She sendsдa andNA to Bob along
with PKA and netid . Everything, including Bob’s identifier B, is
signed with SKA. When receiving a new message, Bob first verifies

Alice
Initiator

Bob
Responder

Pick random
numbers a, NA

PKA, netid , дa , NA,

SignSKA (netid , B, д
a , NA)

Verify SignSKA , B = Bob
Pick b

PKB , дb , SignSKB (A, д
b , NA)

Verify Bob = h(PKB , netid)
Verify SignSKB , A = Alice

KAB = (дb)a

KAB = (дa)b

MACKAB (NA)

Verify MAC

Figure 2: Authenticated Key Agreement Protocol. Alice and

Bob establish a shared symmetric key to be used for subse-

quent communication.

that the signature is valid. He then inspects the identifier B that is
signed by Alice to check that he was the intended recipient. Bob
then picks his own Diffie–Hellman exponent b and sends дb back
to Alice along with his own public key, signed by the corresponding
private key. Bob includes NA from the first message to allow Alice
to confirm freshness, and Alice’s identifier A to allow her to verify
that the message was meant for her. Bob then computes the key
KAB . When Alice receives message 2 she verifies that the hash of
the public key PKB corresponds to the identity she was intending to
communicate with. If that is the case she checks that the signature
is valid and computes the new shared symmetric key KAB = (дb)a .
To prove to Bob that she knows the key, Alice sends him a MAC of
NA created with KAB .

If the protocol terminates without errors, it guarantees that
Alice and Bob share the same secret key. The resulting secret
key will be used in subsequent communication between the devices,
enabling them to authenticate each other. Both Alice and Bob store
KAB together with the identifier of the other party. Hence, the
number of keys that each node has to store is proportional to the
number of identifiers with which it chooses to communicate.

5.1.2 Secure Communication. The Secure Communication Proto-
col is used for all communication between nodes in the network
(except for key establishment). Specifically, all the procedures used
to maintain the P2P network, i.e., join, update and leave, as well
as the messages exchanged to execute a find or store operation,
use this protocol to provide confidentiality, integrity and message
authentication.

The protocol is shown in Figure 3. Alice, who wants to send the
command cmd to Bob, first increments the sequence number SB
she maintains for her communication with Bob. She then encrypts
using the symmetric key she shares with Bob the command along
with Bob’s identity and the sequence number. In her message, she
also includes her identityA to allow Bob to retrieve the correct sym-
metric key and a MAC of everything. When receiving the message

4

Alice
Initiator

Bob
Responder

Increment sequence
number SB

A, EncKAB (B, SB , cmd),MACKAB

Verify MAC, B = Bob
Check SB > S ′B
Execute cmd

EncKAB (SB , resp),MACKAB

Verify MAC, SB

Figure 3: Secure Communication Protocol.Alice andBob com-

municate securely using a symmetric key established with

the Authenticated Key Agreement Protocol.

Bob will verify theMAC using the already established key, and if the
MAC is valid he decrypts the message. Bob ensures that the identity
in the encrypted message is his, and that the sequence number SB is
higher than the previous sequence number he received from Alice.
If so, he can process the command. When a response resp is ready,
Bob encrypts it with KAB together with SB , he calculates the MAC
of the encrypted message and send them back to Alice. When Alice
receives message 2, she verifies that the MAC is valid and that the
sequence number corresponds to the one she sent in message 1.

If the protocol terminates without errors, it guarantees confi-
dentiality and integrity of the command and response.

5.2 Security Analysis

In this section we prove the security guarantees provided by our
protocols presented in the previous section (Sec. 5.1). For our anal-
ysis we assume an attacker under the threat model as described in
Section 4.2.

5.2.1 Authenticated Key Agreement.

Guarantee 1. If the Authenticated Key Agreement Protocol ter-
minates without errors and the decisional Diffie–Hellman (DDH)
assumption holds in the underlying group, the key KAB is known
only to Alice and Bob.

Proof. The only terms in the Authenticated Key Agreement pro-
tocol that are related to the key are the terms a,b,дa,дb ,MACKAB
and of course the key itself. Of these a and b are never visible to the
adversary as they are picked fresh during the protocol, and remain
internal to Alice and Bob, respectively. By the assumption that all
the underlying cryptographic primitives are secure the adversary
cannot obtain the key from the MAC. That leaves дa and дb . If the
adversary has a method of getting KAB from these values then he
can use that method to break the Diffie-Hellman assumption, which
is a contradiction. □

Guarantee 2. If the Authenticated Key Agreement Protocol ter-
minates without errors both Alice and Bob will be in possession of
the same key.

Proof. We prove this for Alice and Bob individually, starting with
Alice. If the protocol completes successfully, Alice knows that she
sharesKAB with Bob. For an adversary, Eve, to break this guarantee
and convince Alice to assign another key KAE to her communi-
cation with Bob, Eve would have to successfully send message 2,
as this is the only way for Alice to obtain Bob’s Diffie-Hellman
contribution. Eve has two options to send message 2: she can either
craft the message or replay a previous captured message.

In order to craft message 2 the adversary has to find another key
pair where the public key obeys the following B = h(PKE , netid).
This means that Eve has to break the second preimage resistance
property of the underlying cryptographic hash function, which
again contradicts the adversarymodel.Without the ability to change
the keys for Bob’s signature, the adversary has to either forge Bob’s
signature or obtain his private key. Both again contradict the ad-
versary model. That only leaves the option to replay a previous
message. For replay to work, Eve has to make sure that the content
of message 2 expected by Alice, corresponds to one of the messages
available to Eve. Because the nonce NA selected by Alice and Al-
ice’s identifier are both part of the signature in message 2, it means
that Eve cannot reuse a message from a previous session or one
that Bob sent to another node, to attack Alice. Eve would have
to force Alice to chose a nonce that corresponds to one of Eve’s
captured messages; however, according to our threat model, Eve
cannot influence Alice’s choice of NA.

We now prove the same for Bob. By the same argument as above
the adversary cannot forge Alice’s signature onmessage 1. However
replay is a different story. Bob does not have away to readily check if
message 1 is a fresh message from Alice or indeed a replay from Eve,
so Eve can initiate a protocol run. However, in order to successfully
fool Bob and make him register a different symmetric key for Alice,
Eve has to confirm the new key in message 3. By Guarantee 1, Eve
does not know the symmetric key even if she sent the first message.
That means that she has to produce a valid MAC of NA without
knowing the key. For a secure MAC scheme this is not possible,
and guessing either the key or the mac-value itself is only possible
with negligible probability. □

5.2.2 Secure Communication Protocol.

Guarantee 3. As long as the symmetric key KAB remains known
only to Alice and Bob, message confidentiality and integrity is
preserved for any command and response sent by Alice and Bob
respectively.

Proof. Both the command and response are solely sent encrypted
with KAB . The only way to break confidentiality of the command or
response is to break the confidentiality of the encryption function.
This contradicts the threat model which states that all underlying
primitives are secure. In order to violate message integrity the
adversary would have to recreate the MAC of the message without
knowing the MAC-key. This again contradicts the threat model
which states that all underlying primitives are secure. □

Guarantee 4. Any command received by Bob can be attributed to
Alice and any response Alice receives can be attributed to Bob. In
other words, message authentication is guaranteed.

Proof. This guarantee has to be shown for Alice and Bob individu-
ally. To break the guarantee for Alice the adversary would have to

5

Table 1: Themis’s High-Level Messages. The sender and re-

ceiver assign cmd and rsp in the Secure Communication Pro-

tocol according to the operation they want to execute.

Operation Sender (cmd) Receiver (resp)

Find (find, identi f ier) value or id

Store (store, obj) ack

Join (join, net id) id

Update update id or (id,ObjTable)
Leave (leave, ObjTable , id) ack

manipulate message 2. By Guarantee 3 message 2 cannot be crafted,
so that only leaves replay. To successfully convince Alice that a
false response came from Bob, the adversary has to replay a valid
message containing the same sequence number that Alice used at
the start of the protocol. The sequence number is incremented be-
fore each new transmission by Alice so two packets from different
sessions will never use the same number. The only message that
uses the same sequence number is the one just sent by Alice, but
the encryption contains the intended receiver so it cannot be used
to replay (reflect) message 2. The only message the adversary can
replay is the true message sent by Bob which is not an attack.

To break the guarantee for Bob the adversary must manipulate
message 1. By Guarantee 3 message 1 cannot be crafted, so that
only leaves replay. To succeed the adversary must replay a message
containing a sequence number that is bigger than the biggest one
Bob has yet received. That means the adversary can only drop
messages but never deliver them out of order. In fact the adversary
cannot use any old messages that was sent prior to the last message
received by Bob. □

6 THEMIS’S HIGH-LEVEL ARCHITECTURE

In Section 5.1 we presented the two protocols that construct Themis
and in Section 5.2 we proved the security properties they provide. In
this section, we elaborate on how Themis builds a secure structured
P2P platform.

6.1 High-Level Protocols

To support a decentralized identity management, Themis follows a
DHT architecture implementing five key operations, find, store,
join, update and leave. From these operations, find and store
support the identifier-to-object mapping whereas join, update
and leave support maintenance procedures for P2P organization.
Every peer initially executes Themis’s Authentication Key Agree-
ment protocol depicted in Fig 2 with each other node it wants to
communicate. This handshake allows nodes to establish a secure
communication channel based on a secret symmetric key. To ex-
ecute the P2P operations, nodes send messages using Themis’s
Secure Communication protocol depicted in Fig 3. The sender and
the receiver assign the cmd and rsp variables according to the re-
spective P2P operation as illustrated in Table 1. In the following
paragraphs we describe the P2P operations.

Find: This operation allows nodes to reach specific identifiers,
i.e., m-bit addresses from a finite address space 2m , organized on
a ring topology in a clockwise order and calculated at random

using a cryptographic hash function h(m). The identifier that is
specified each time by the initiator can refer to a node nodeid
or to an application-specific data objectid . When nodes receive a
find request, they try to resolve it by examining if this identifier
is included in their routing table or in their object table. In its
routing table, i.e., RTid , every node maintainsm entries with the
details of other nodes that succeeds it on the ring. For a node with
nodeid = n, each entry i contains the details of the closest node with
nodeid ≥ n+2(i−1), with i = 1 being the successor ofn. The way the
routing table is constructed allows identifiers to be found in at most
m steps. Further to thesem entries, nodes save in their routing table
the details of their predecessor, i.e., the closest node that precedes
them along the ring. The object table, i.e., OTid , is the table where
nodes store mappings between nodeid and objectid for the objects
they are responsible for. The successor of every object, i.e., the
closest node for which it applies objectid ≤ nodeid , becomes the
responsible for this object node. The find operation for a nodeid
terminates to a node that has this nodeid in its RTid , returning
the associated communication address of the specified nodeid . In
the case of an objectid , find terminates to the responsible for this
object node, who will return the value it stores for this object,
i.e., a list of identifiers {nodeid } of the nodes who have associated
themselves with this object. In case the receiver of the request does
not have this identifier neither in its RTid nor in its OTid , it will
return the nodeid (and the communication address) of the closest
entry from its RT that precedes the sought-after identifier. To allow
the initiator to monitor how her request is progressively resolving,
we adopt an iterative routing where all the traffic is handled by
the requesting node; the responder will return the closest node to
the initiator, who will then initiate a new operation with this new
node.

Store: This operation provides the possibility for each node to
associate its nodeid with a specific objectid . The node who wants to
be associated initially starts a find operation for this objectid ; this
will provide the possibility to the initiator to retrieve the responsi-
ble node for this object. As soon as the node has this information, it
will contact the responsible node specifying the object with which
it wants to be associated. The responder will then amend the list
for this object with the nodeid of the initiator. Themis achieves
fault tolerance by adopting a replication mechanism that maps
application-specific data to multiple objects. In particular, every de-
scriptor that is defined by the naming mechanism in use is hashed
together with a counter number objectid = h(nameid | |r) where
r ∈ [0,k]; thus, for a single application-specific data nodes create
and store k + 1 objects. The value k is a network constant agreed
among the participant nodes, which determines an upper bound
of the redundant objects that will be stored on the network. How-
ever, nodes are free to decide the value k they will use for every
application-specific data. The responsible nodes drop the values
they store in between specific time intervals t . For this reason, peers
contact the responsible nodes periodically, to make sure that their
associations are maintained registered on the network.

Join: To learn the first node who succeeds them in the network,
nodes execute the join operation with a bootstrapping node, a node
which they know and which is already a member of this network.
The bootstrapping node will initiate a find operation specifying

6

the newcomer’s nodeid as the sought-after identifier. Based on the
routing procedure explained above, the find operation will return
at the end the first successor of this identifier in the network. The
responder will return to the initiator its first successor who upon
receiving its response will save it as its first successor in its RTid .

Update: To maintain a consistent mapping between nodes and
objects, nodes periodically execute the update operation in specific
time intervals. During this operation every node will contact its
first successor to check if it is actually the node who succeeds it in
this network. The responder, upon receiving the initiator’s request
will retrieve his predecessor and check if his predecessor is also a
predecessor of the initiator. If this is the case, the responder saves
the initiator as his predecessor and checks to see if the nodeid of the
initiator is closer than his identifier to any of the objects for which
he is responsible. If there are such objects, he will pass themwith his
response to the initiator who will now become the responsible for
these objects node. If the predecessor of the responder is between
the responder and the initiator identifiers, the responder will send
back to the initiator his predecessor nodeid as this is her correct
first successor who she needs to communicate.

Leave: In Themis nodes maintain in their OTid the associated
values for all the objects for which they are responsible. The Leave
operation allows for node departures from a network to occur with-
out any loss of associations. The initiator who wants to leave the
network communicates her first successor to pass the information
related to the objects for which she is responsible together with the
nodeid of her predecessor. The responder will store and become
now responsible for these objects. He will also update his predeces-
sor so as to point to the initiator’s predecessor. In Themis nodes are
free to leave and join at any time. Nodes can abandon any network
in which they participate without notifying other nodes, in this
case any node who will try to contact them will receive a timeout
and the node will be presumed dead, and all the associated values
for the objects for which they were responsible will be lost. The rest
nodes of the network can retrieve the lost associations by initiating
a find request for one of the k remaining objects.

6.2 P2P Attacks

In this section we elaborate on the security properties of the P2P
operations against common attacks of DHT networks [46].

Sybil attack: The self-certifying identifiers that Themis provides
allow every device to participate in the network without the need
for any initial communication. They also allow devices to create as
many identities as they want, known as a Sybil attack, which can
be problematic in certain applications. Themis does not consider
this behavior an attack since the properties of message linkability
and authentication still apply for every identity. Some applica-
tions might want to use different identities to provide different
services—even though these are hosted by the same device. Our
solution makes that possible. For applications where Sybil attacks
are problematic, Themis provides the application layer with enough
information, i.e., the communication address of each identity, to
implement checks for which identities are allowed to run on which
devices.

Eclipse (Routing Table Poisoning) attacks: In an Eclipse at-
tack an attacker tries to isolate a node from honest peers by placing
malicious nodes as its neighbors. It is possible for an attacker to
insert incorrect information into the routing table of a device if that
device happens to contact an adversary. However, because of the
circular structure of the addresses, it is always possible to check if
a find request is making progress towards its goal. If progress is
not being made the device can make sure not to contact the same
identity again. As long as there are still honest nodes present in the
routing table, the device will eventually ask one of them and get
useful information. A coordinated attack against a specific device
could result in DoS, but that falls outside of our threat model (Sec.
4.2).

Storage attacks: Themis enables nodes to store an association
between an application-specific data object, e.g., a service name,
and its identity in the network. Specifically the association is kept
by k + 1 different nodes, and some of those nodes might decide
to drop the association, or make up an association that does not
exist (ghost objects). If that happens other devices that search for
an object will either not find it or find a ghost object that matches
their search. This is a nuisance but will never result in a violation of
any of our security guarantees. Any object is stored in the network
k + 1 times so if an association is drooped by a few nodes the other
objects will still be available. Furthermore, it is the responsibility
of any node that stores data in the network to regularly check and
re-store the data if objects are missing, so such an attack has limited
effects. If a ghost object is returned from a find operation, it will
result in a connection attempt to the identity pointed to by the
ghost object. That identity can either signal that the association is
unknown, in which case the attack resulted in a single unnecessary
connection and nothing else. If the ghost object points to an attacker
that then provides a service, that is not an attack on Themis. This
is equivalent to an attacker announcing a service under a specific
name and then providing that service. The service itself might be
malicious, but that is a problem for the application layer as Themis
does not know or care what data is transferred, only that the identity
of the communicating partners cannot be falsified.

7 THEMIS SERVICE MESH

We now elaborate on how Themis can be used to assist program-
mers tasked with the development of serverless applications by
taking care of all the low-level details of a secure and scalable
communication across serverless nodes. Let’s assume an example
application, AppAuth consisting of two microservices: an ingress
point, i.e., handler, and a processing back-end, i.e., check.When the
handler microservice receives a web request carrying a username
and a password, uses check to fetch a dictionary of known users’
credentials, validates the received pair, and then handles it appro-
priately by sending a response message and associated code.

The programmer starts by creating a mesh with a specific net-
work identifier to group the microservices that need to communi-
cate, specifying a bootstrapping node. In our example, microser-
vices joins a service mesh with identifier twiitr and bootstrap-
ping point the route /main. Microservices are placed on a ring
topology based on each microservice’s node identifier, following
a key-based routing scheme. Themis allows service discovery by

7

creating mappings between the node identifiers and the microser-
vices. A node first creates a cryptographic public-private key pair
and generates its identifier B = h(PKB , twiitr). It then calculates
an object identifier for the microservice it implements, by hashing
the service’s name interface, e.g., ObjectB = h(check). A mapping
is created by initiating the store operation that informs the re-
sponsible node for ObjectB to amend the object’s value with its
node identifier B. Nodes that request check, for example node A,
retrieve B by initiating a find operation for ObjectB . In fact, the
find operation returns to the requester a list of node identifiers
that have executed the store operation specifying ObjectB . There
is one node responsible for every object identifier. Themis adopts a
redundancy mechanism having one microservice to be associated
with multiple object identifiers. In our example, assuming a redun-
dancy factor k = 2, the check microservice will be associated to
three sibling object identifiers,ObjectB ,ObjectB1 = h(check, 1) and
ObjectB2 = h(check, 2), for which node B initiates three separate
store operations. NodeA can retrieve B by initiating a find opera-
tion for any of the three object identifiers. The returned list and the
redundancy factor provide fault tolerance; in case of failing nodes
the requester can select another node from the list or initiate a find
operation for a sibling object, until a node with a healthy state is
found. Nodes select randomly over the returned list the node to
communicate; thus, the load is evenly distributed between the repli-
cated nodes. Further to the dynamic load balancing property that
this technique provides, it also enables canary releases. As nodes
are evenly selected, programmers can deploy a new version of a
microservice progressively on different machines based on their
nodes identifiers.

In a centralized architecture configuration functionalities, e.g.,
authentication and discovery, are implemented in whole or in part
by control plane registries which data plane proxies need to com-
municate to operate. Themis couples the data and the control plane
implementing a fully decentralized application. In our example the
responsible node for ObjectB , e.g., node C , fulfils the task of a cen-
tral service discovery registry redirecting A to B. Themis leverages
the DHT to route messages among peers; thus, it inherits its scala-
bility property to accommodate the high rate of replication services.
Abolishing managerial registries provides openness that facilitates
migration off commodity serverless platforms, particularly benefi-
cial to enable access and processing of data hosted on edge devices.
Decreasing programmers lock-in can allow them to invent their
own configuration services, e.g., observability, exposed through
special service-name interfaces that application microservices can
discover following the same discovery mechanism explained above.
The low-level protocols of Themis render nodes accountable for the
messages they exchange. Using every message as a node behaviour
trace, faulty or malicious activity can be identified and resolved.

8 IMPLEMENTATION

We have implemented a prototype of Themis in about 3.3K lines of
JavaScript, chosen due to its ubiquity in serverless environments.
Our implementation is open-sourced and available on GitHub at
github.com/atlas-runtime/themis.Themis is embedded in Atlas [30],
a runtime environment for automated offloading and scale-out of
JavaScript programs.

A thin command-line wrapper allows the construction of virtual
nodes for testing and experimentation, as Unix processes running
on QuickJS [14]. QuickJS is an embeddable Javascript engine that
supports the ES2020 specification including modules, asynchronous
generators, and proxies. The runtime environment is small, offering
about 210 KiB of x86 code for a simple hello world program.

Themis uses the built-in EcmaScript object type to maintain
an in-memory mapping between strings to identifiers (along with
their timeouts and debug metadata). In terms of cryptographic
support, Themis offloads operations to NaCl [17], a high-speed
constant-time cryptographic library compiled to JavaScript using
Emscripten (adding another 2K LoC). NaCl offers high performance
cryptographic primitives, avoids calls to dynamic memory alloca-
tion functions such as malloc and sbrk, and uses small amounts of
stack space. Upon bootup, a service generates a new secure public-
private key pair. For the communication between two services, NaCl
provides primitives that combine a receiver’s public key with the
sender’s private key to derive a common symmetrical key. This key
is then used to symmetrically encrypt and authenticate plaintext
messages (in Themis, serialized buffers).

Themis is accessible as a software module (library), implantable
into (often, pre-existing) programs using a conventional import
statement. Upon import, the Themis library (1) checks for the ex-
istence of a public-private key pair, and if non-existent generates
a fresh one; (2) loads and binds a listener of the chosen transport
protocol on a pre-specified port (consecutive ports for multiple
nodes running on a single physical host); (3) returns the Themis
object, which is used to access Themis’s interfaces.

9 EVALUATION

In this section, we investigate the following questions: (Q1) What
is the performance and scalability characteristics of serverless ap-
plications built on top of Themis, and how do they compare to
Themis-less versions (Sec. 9.1)? (Q2) How do different Themis op-
erations perform in the limit, and how do they compare with their
insecure counterparts (Sec. 9.2)? To answer these questions, we
perform experiments across two distinct environments. For Q1, we
use as benchmarks eight serverless applications, outlined in Table 2
(alphabetical order), whereas for Q2, we use synthetic microbench-
marks that stress individual Themis operations.

Result Highlights: Across all eight serverless applications, the
security benefits of Themis come at an imperceptible throughput
overhead (1.24%, on average) and a small latency overhead (< 4% in
almost all the benchmarks), more pronounced in the context of low-
latency serverless applications. The application startup overhead
introduced by Themis is 356.52% in the worst case, but remains
under 1s and is an one-off cost amortized across the long execution
times typical for serverless applications.

Experimental Setup: On the hardware side, for Q1 we use an
8-node distributed cluster on Microsoft’s Azure Cloud. It amounts
to eight DC1s v.2 machines equipped with Intel Xeon E-2288G
CPUs and 4GB of memory, and running Ubuntu 18.04 LTS with
kernel version 5.4.0-147. For Q2, we use a large-scale multiprocessor
equipped with an 128-core Intel Xeon E7-8830 processor at 2.13GHz,
512GB of memory; it is running Debian 4.19.160-2 with kernel
version 4.19.0-13. This environment is used to launch hundreds

8

https://github.com/atlas-runtime/themis

Table 2: End-to-end performance evaluation. For each measurement we present three values: The performance of Themis T , the
performance of a vanilla implementation V , and the increase in percent %∆.

Startup Time [s] Exec. Time [s] Throughput [req/s] Latency [s] Duration [s]

%∆ T / V %∆ T / V %∆ T / V %∆ T / V %∆ T / V

DecisionTree 19.23 0.31 / 0.26 0.20 176.25 / 175.90 0.00 0.68 / 0.68 0.91 57.59 / 57.07 0.00 1.45 / 1.45
K-Means Clustering 45.86 0.31 / 0.21 0.23 245.70 / 245.14 0.00 0.49 / 0.49 0.23 92.19 / 91.98 0.00 2.02 / 2.02
Knn 356.52 1.05 / 0.23 0.48 731.69 / 728.20 0.00 0.16 / 0.16 0.58 336.93 / 334.98 0.33 6.03 / 6.01
LinearRegression 43.48 0.33 / 0.23 7.97 169.10 / 156.62 7.79 0.71 / 0.77 12.99 53.48 / 47.33 7.75 1.39 / 1.29
NLP 12.50 0.45 / 0.40 0.95 129.19 / 127.98 1.06 0.93 / 0.94 3.94 34.30 / 33.00 0.95 1.06 / 1.05
NaiveBayes 42.86 0.30 / 0.21 0.39 124.62 / 124.14 1.03 0.96 / 0.97 2.80 31.89 / 31.02 0.00 1.02 / 1.02
RandomForest 30.00 0.26 / 0.20 0.22 120.40 / 120.13 0.00 1.00 / 1.00 2.69 29.74 / 28.96 0.00 0.99 / 0.99
Unweighted Shortest-Path 0.00 0.04 / 0.04 0.13 165.46 / 165.24 0.00 0.73 / 0.73 0.37 52.23 / 52.04 0.00 1.36 / 1.36

of micro-services, avoiding the non-determinism introduced by
network operation and allowing us to zoom into Themis-inherrent
overheads. On the software side, we use QuickJS u-2021-03-27.
We launch multiple (virtual) Themis nodes as operating-system
processes on each physical node. Each virtual Themis node has its
own copy of the runtime environment, listens on a separate (ip,
port) pair, and accepts events in its own event queue. Except when
noted otherwise, we report averages over 1K runs.

9.1 Q1: End-to-End Performance

To understand the performance and scalability overheads intro-
duced by Themis, we compare the Themis-augmented benchmark
applications against their non-secure counterparts—i.e., ones that
do not incorporate Themis’ security components. Table 2 presents
the results of Themis’s end-to-end performance evaluation across
five metrics: startup time, execution time, throughput, latency and
duration. Each measurement cell contains three numbers—a tuple
of the form (∆, V , T) where ∆ is the percent difference between
the vanilla and Themis-augmented versions of the serverless ap-
plication, and V and T is the absolute measurement corresponding
to the vanilla and the secure, Themis-augmented implementation,
respectively.

Regarding startup time, i.e., , the duration cost of reaching a
stable state—registering all relevant services and creating encrypted
communication channels between them—Themis introduces an
average overhead 0.16s . The total execution time, i.e., the end-to-
end time to run the full load, showsminimal differences (under 1% in
most of the cases). Similarly, the request throughput, i.e., the number
of requests a serverless application handles per second, shows
identical performance for the majority of the evaluated applications.
Themis has a higher impact on the application Latency, the average
time to execute a single request. Themis introduces a maximum
of 13% latency overhead to each request, whereas the execution
overhead of each request ranges between 0–7.75%.

9.2 Q2: Individual Operator Performance

To understand Themis’s performance of find and store opera-
tions across different scales, we perform two experiments where
we insert and retrieve 1M 16-byte data objects at a constant rate
of 50K objects per second. In the first experiment, the objects are
configured to resolve to the node receiving the request to store or

Figure 4:Operation Find.The plots show the throughput (bottom)
and the latency (top) of the find operation, as a function of the
number of nodes, on a constant operation workload of 50K peer-to-
peer operations per second.

retrieve the object—i.e., the node does not need to forward the re-
quest to other nodes. By resolving the request locally, i.e., excluding
multiple hops of serialization, inter-process communication, and
context switching, the throughput and latency results show the best-
possible performance achieved by our runtime implementation—
i.e., Themis’s practical limits due to the implementation’s runtime
environment. The resulting throughput averages 10223 and 9332
operations per second for find and store, respectively; the re-
sulting latency averages 331ms and 338ms for find and store,
respectively.

In the second experiment, we focus on the throughput as a func-
tion of the number of nodes. Object identifiers are now randomly
generated, and thus are expected to hit all the nodes in the net-
work with uniform probability. Fig. 4 shows the throughput and
the latency of the find operation as a function of the number of
nodes. The overhead of adding security ranges between 2.1–31.6%
and depends critically on the percentage of nodes that have already
performed the key agreement protocol. For low numbers of nodes
(left side of plots), the majority of nodes have performed the key
agreement protocol, whereas for high numbers of nodes (right side
of plots), the majority of nodes have not.

To understand the performance of the join operation, we have
500 nodes contact ten bootstrap nodes in round-robin fashion. Start-
ing these 500 nodes sequentially takes 362.466s (an average of
720.5ms/node). If, however, we spawn 500 nodes in parallel, we get
a total of 15.403s (an average of 30ms/node). A part of this overhead
includes operating system overheads such as V8 process creation,
which averages about 320ms per node. Other overheads arise from

9

the identify (public-private key pair) creation and the authenticated
key agreement protocol, averaging about 52ms.

To understand the overhead of leave, we launch a series of
nodes with a startup configuration that runs a join followed by
a leave command when the join command completes. We run
this sequentially in a loop where we spawn a node only after the
previous node has shutdown; on average, “blinking” a node, i.e.,
have a node leave right after joining, takes a total of 780ms. Much
of this time is spent in system-level overheads, most of which is
from (i) importing multiple library source files and (ii) binding to
various network interfaces. The overhead of leave amounts to less
than 50ms.

10 CONCLUSION

This paper presents Themis, a framework for secure P2P commu-
nication that is general enough to be usable in a variety of sce-
narios that demand point-to-point interaction. In this paper we
have shown how Themis can serve as a platform for implement-
ing a secure service mesh communication network for use in data
centres and companies that need dynamic load balancing and ex-
tensibility. Themis consists of two layers. Its lower layer provides
a secure communication protocol, similar to mTLS in many ways
but with a strong emphasis on distributed identity management.
We provide a thorough security analysis that proves the claimed
security guarantees, i.e., confidentiality, message integrity, and mes-
sage authentication/linkability. We emphasize how any additional
guarantees can be built on top, leveraging its core security prop-
erties. Its upper layer consists of a set of actions that offer a fully
functional P2P network.

ACKNOWLEDGMENTS

We would wish to thank the UK EPSRC and British Telecommu-
nications who have funded this research through a partial PhD
studentship in Cyber Security for EU Candidates and a Russel Stu-
dentship, grant ref. EP/P00881X/1 and contract no. 8013972, respec-
tively. This research was also funded in part by DARPA contract no.
HR00112020013 and no. HR001120C0191. Any opinions, findings,
conclusions, or recommendations expressed in this material are
those of the authors and do not necessarily reflect those of the
funding bodies.

REFERENCES

[1] Angeliki Aktypi, Kubra Kalkan, and Kasper Rasmussen. 2020. SeCaS: Secure
Capability Sharing Framework for IoT Devices in a Structured P2P Network. In
Proceedings of the 10th ACM Conference on Data and Application Security and
Privacy (CODASPY ’20). ACM, New York, NY, USA, 271–282.

[2] AWS Authors. 2021. AWS AppMesh User Guide. Amazon. Retrieved November 10,
2021 from https://docs.aws.amazon.com/app-mesh/latest/userguide/app-mesh-
ug.pdf

[3] AWSAuthors. 2021. AWS LambdaDeveloper Guide. Amazon. RetrievedNovember
10, 2021 from https://docs.aws.amazon.com/lambda/latest/dg/lambda-dg.pdf#
welcome

[4] Google Authors. 2021. Google Cloud Functions. Google. Retrieved November 10,
2021 from https://cloud.google.com/functions/

[5] Istio Authors. 2021. The Istio service mesh. Istio. Retrieved November 10, 2021
from https://istio.io/latest/about/service-mesh/

[6] Libp2p Authors. 2021. Libp2p. Protocol Labs. Retrieved November 10, 2021 from
https://libp2p.io

[7] Linkerd Authors. 2021. Linkerd Architecture. Linkerd. Retrieved November 10,
2021 from https://linkerd.io/2.11/reference/architecture/#

[8] NGINX Authors. 2021. NGINX Architecture. F5. Retrieved November 10, 2021
from https://docs.nginx.com/nginx-service-mesh/about/architecture/

[9] OpenFaaS Authors. 2021. OpenFaaS - Serverless Functions Made Simple. OpenFaaS.
Retrieved November 10, 2021 from https://docs.openfaas.com

[10] Open Service Mesh Authors. 2021. Open Service Mesh Docs. Microsoft. Retrieved
November 10, 2021 from https://docs.openservicemesh.io

[11] The Kubernetes Authors. 2021. What is Kubernetes? Kubernetes. Retrieved
November 10, 2021 from https://kubernetes.io/docs/concepts/overview/what-is-
kubernetes/

[12] Agapios Avramidis, Panayiotis Kotzanikolaou, and Christos Douligeris. 2007.
Chord-PKI: Embedding a Public Key Infrastructure into the Chord Overlay Net-
work. In Proceedings of the 4th European Conference on Public Key Infrastructure:
Theory and Practice (EuroPKI’07). Springer-Verlag, Berlin, Heidelberg, 354–361.

[13] Ingmar Baumgart and Sebastian Mies. 2007. S/kademlia: A Practicable Approach
Towards Secure Key-Based Routing. In International Conference on Parallel and
Distributed Systems. IEEE, New York, NY, USA, 1–8.

[14] Fabrice Bellard. 2019. QuickJS Javascript Engine. https://bellard.org/quickjs/
Accessed: 2022-06-11.

[15] Juan Benet. 2014. IPFS - Content Addressed, Versioned, P2P File System.
arXiv:1407.3561 [cs.NI]

[16] Juan Benet, Bigs, and Yusef Napora. 2021. Secio Specification. libp2p. Retrieved No-
vember 10, 2021 from https://github.com/libp2p/specs/tree/master/secio#shared-
secret-generation

[17] Daniel J Bernstein, Bernard Van Gastel, Wesley Janssen, Tanja Lange, Peter
Schwabe, and Sjaak Smetsers. 2015. TweetNaCl: A Crypto Library in 100 Tweets.
In International Conference on Cryptology and Information Security in Latin Amer-
ica. Springer International Publishing, Cham, 64–83.

[18] Neander L. Brisola, Altair O. Santin, Lau C. Lung, Heverson B. Ribeiro, and
Marcelo H. Vithoft. 2009. A Public Keys Based Architecture for P2P Identification,
Content Authenticity and Reputation. In International Conference on Advanced
Information Networking and Applications Workshops. IEEE, New York, NY, USA,
159–164.

[19] Kevin R.B. Butler, Sunam Ryu, Patrick Traynor, and Patrick D. McDaniel. 2008.
Leveraging Identity-Based Cryptography for Node ID Assignment in Structured
P2P Systems. IEEE Transactions on Parallel and Distributed Systems 20, 12 (2008),
1803–1815.

[20] Miguel Castro, Peter Druschel, Ayalvadi Ganesh, Antony Rowstron, and Dan S.
Wallach. 2002. Secure Routing for Structured Peer-to-Peer Overlay Networks.
ACM SIGOPS Operating Systems Review 36, SI (2002), 299–314.

[21] Leucio Antonio Cutillo, Refik Molva, and Thorsten Strufe. 2009. Safebook: A
Privacy-Preserving Online Social Network Leveraging on Real-Life Trust. IEEE
Communications Magazine 47, 12 (2009), 94–101.

[22] Amine El Malki and Uwe Zdun. 2019. Guiding Architectural Decision Making
on Service Mesh Based Microservice Architectures. In Software Architecture.
Springer International Publishing, Cham, 3–19.

[23] Jeff Escalante and Zachary Shilton. 2021. Consul Architecture. HashiCorp. Re-
trieved November 10, 2021 from https://www.consul.io/docs/architecture

[24] Rohit Gupta and Arun K. Somani. 2004. Reputation Management Framework and
Its Use as Currency in Large-Scale Peer-to-Peer Networks. In Fourth International
Conference on Peer-to-Peer Computing. IEEE, New York, NY, USA, 124–132.

[25] Dalton A. Hahn, Drew Davidson, and Alexandru G. Bardas. 2020. MisMesh:
Security Issues and Challenges in Service Meshes. In Security and Privacy in
Communication Networks. Springer International Publishing, Cham, 140–151.

[26] Scott Hendrickson, Stephen Sturdevant, Tyler Harter, Venkateshwaran Venkatara-
mani, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. 2016. Serverless
Computation with OpenLambda. In 8th USENIX Workshop on Hot Topics in Cloud
Computing (HotCloud ’16). USENIX Association, Denver, CO, 7 pages.

[27] Tanaka Hiroyuki, Saito Shoichi, and Matsuo Hiroshi. 2011. Node Management
without Directory Servers in DHT-Based Anonymous Communication Systems
Using ID-Based Encryption. International Journal for Information Security Re-
search 1, 3 (2011), 154–163.

[28] Nirmala N. Jagadale and Thaksen J. Parvat. 2014. A Secured Key Issuing Protocol
for Peer-to-Peer Network. In 2014 IEEE Global Conference on Wireless Computing
& Networking. IEEE, New York, NY, USA, 213–218.

[29] Eric Jonas, Johann Schleier-Smith, Vikram Sreekanti, Chia-Che Tsai, Anurag
Khandelwal, Qifan Pu, Vaishaal Shankar, Joao Carreira, Karl Krauth, Neeraja Yad-
wadkar, Joseph E. Gonzalez, Raluca Ada Popa, Ion Stoica, and David A. Patterson.
2019. Cloud Programming Simplified: A Berkeley View on Serverless Computing.
arXiv:1902.03383 [cs.OS]

[30] Dimitris Karnikis, Dimitris Deyannis, Giorgos Anagnopoulos, Grigoris Ntousakis,
Sotiris Ioannidis, and Nikos Vasilakis. 2022. Atlas: Automated Scale-out of Trust-
Oblivious Systems to Trusted Execution Environments. https://github.com/atlas-
runtime

[31] Nadim Kobeissi, Georgio Nicolas, and Karthikeyan Bhargavan. 2019. Noise Ex-
plorer: Fully Automated Modeling and Verification for Arbitrary Noise Protocols.
In European Symposium on Security and Privacy (EuroS&P ’19). IEEE, New York,
NY, USA, 356–370.

10

https://docs.aws.amazon.com/app-mesh/latest/userguide/app-mesh-ug.pdf
https://docs.aws.amazon.com/app-mesh/latest/userguide/app-mesh-ug.pdf
https://docs.aws.amazon.com/lambda/latest/dg/lambda-dg.pdf#welcome
https://docs.aws.amazon.com/lambda/latest/dg/lambda-dg.pdf#welcome
https://cloud.google.com/functions/
https://istio.io/latest/about/service-mesh/
https://libp2p.io
https://linkerd.io/2.11/reference/architecture/#
https://docs.nginx.com/nginx-service-mesh/about/architecture/
https://docs.openfaas.com
https://docs.openservicemesh.io
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://bellard.org/quickjs/
https://arxiv.org/abs/1407.3561
https://github.com/libp2p/specs/tree/master/secio#shared-secret-generation
https://github.com/libp2p/specs/tree/master/secio#shared-secret-generation
https://www.consul.io/docs/architecture
https://arxiv.org/abs/1902.03383
https://github.com/atlas-runtime
https://github.com/atlas-runtime

[32] Hugo Krawczyk, Kenneth G. Paterson, and Hoeteck Wee. 2013. On the Security
of the TLS Protocol: A Systematic Analysis. In Annual Cryptology Conference.
Springer, Cham, 429–448.

[33] Wubin Li, Yves Lemieux, Jing Gao, Zhuofeng Zhao, and Yanbo Han. 2019. Ser-
vice Mesh: Challenges, State of the Art, and Future Research Opportunities. In
International Conference on Service-Oriented System Engineering. IEEE, New York,
NY, USA, 122–1225.

[34] Thomas Lin, Weiyu Zhao, Ivan Co, Andrew Chen, Henry Xu, and Alberto Leon-
Garcia. 2021. PhysarumSM: P2P Service Discovery and Allocation in Dynamic
Edge Networks. In International Symposium on Integrated Network Management.
IFIP/IEEE, Laxenburg, Austria, 304–312.

[35] Guor-Huar Lu and Zhi-Li Zhang. 2007. Wheel of Trust: A Secure Framework for
Overlay-Based Services. In International Conference on Communications. IEEE,
New York, NY, USA, 1148–1153.

[36] Robert Lychev, Samuel Jero, Alexandra Boldyreva, and Cristina Nita-Rotaru. 2015.
How Secure and Quick is QUIC? Provable Security and Performance Analyses. In
Symposium on Security and Privacy (S&P ’15). IEEE, New York, NY, USA, 214–231.

[37] Petar Maymounkov and David Mazieres. 2002. Kademlia: A Peer-to-Peer Informa-
tion System Based on the XOR Metric. In International Workshop on Peer-to-Peer
Systems. Springer, Cham, 53–65.

[38] David Mazieres and M Frans Kaashoek. 1998. Escaping the Evils of Centralized
Control with Self-Certifying Pathnames. In Proceedings of the 8th ACM SIGOPS
EuropeanWorkshop on Support for Composing Distributed Applications. ACM, New
York, NY, USA, 118–125.

[39] Yusef Napora. 2020. Noise Specification. libp2p. Retrieved November 10, 2021
from https://github.com/libp2p/specs/tree/master/noise

[40] Esther Palomar, Juan M. Estevez-Tapiador, Julio C. Hernandez-Castro, and Arturo
Ribagorda. 2006. A P2P Content Authentication Protocol Based on Byzantine
Agreement. In International Conference on Emerging Trends in Information and
Communication Security. Springer, Cham, 60–72.

[41] Vivek Pathak and Liviu Iftode. 2006. Byzantine Fault Tolerant Public Key Au-
thentication in Peer-to-Peer Systems. Computer Networks 50, 4 (2006), 579–596.

[42] Bernd Prünster, Dominik Ziegler, Chrisitan Kollmann, and Bojan Suzic. 2018.
A Holistic Approach Towards Peer-to-Peer Security and Why Proof of Work
Won’t Do. In International Conference on Security and Privacy in Communication
Systems. Springer, Cham, 122–138.

[43] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott Shenker.
2001. A Scalable Content-Addressable Network. In Proceedings of the 2001 Con-
ference on Applications, Technologies, Architectures, and Protocols for Computer
Communications. ACM, New York, NY, USA, 161–172.

[44] Nitesh Saxena, Gene Tsudik, and Jeong Hyun Yi. 2007. Threshold Cryptography
in P2P and MANETs: The Case of Access Control. Computer Networks 51, 12
(2007), 3632–3649.

[45] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Balakrish-
nan. 2001. Chord: A Scalable Peer-to-Peer Lookup Service for Internet Applica-
tions. ACM SIGCOMM Computer Communication Review 31, 4 (2001), 149–160.

[46] Guido Urdaneta, Guillaume Pierre, and Maarten Van Steen. 2011. A Survey of
DHT Security Techniques. Comput. Surveys 43, 2 (2011), 1–49.

[47] Dan S. Wallach. 2002. A Survey of Peer-to-Peer Security Issues. In International
Symposium on Software Security. Springer, Cham, 42–57.

[48] PaulWouters, Hannes Tschofenig, JohnGilmore, SamuelWeiler, and Tero Kivinen.
2014. Using Raw Public Keys in Transport Layer Security (TLS) and Datagram
Transport Layer Security (DTLS). https://doi.org/10.17487/RFC7250

[49] Pamela Zave. 2017. Reasoning About Identifier Spaces: How to Make Chord
Correct. IEEE Transactions on Software Engineering 43, 12 (2017), 1144–1156.

[50] Ben Y. Zhao, Ling Huang, Jeremy Stribling, Sean C. Rhea, Anthony D. Joseph,
and John D. Kubiatowicz. 2004. Tapestry: A Resilient Global-Scale Overlay for
Service Deployment. IEEE Journal on Selected Areas in Communications 22, 1
(2004), 41–53.

11

https://github.com/libp2p/specs/tree/master/noise
https://doi.org/10.17487/RFC7250

	Abstract
	1 Introduction
	2 Related work
	3 Themis Architecture
	3.1 Design Goals
	3.2 Overview

	4 System & Adversary Model
	4.1 System Model
	4.2 Adversary Model

	5 Themis's Low-Level Architecture
	5.1 Low-Level Protocols
	5.2 Security Analysis

	6 Themis's High-Level Architecture
	6.1 High-Level Protocols
	6.2 P2P Attacks

	7 Themis Service Mesh
	8 Implementation
	9 Evaluation
	9.1 Q1: End-to-End Performance
	9.2 Q2: Individual Operator Performance

	10 Conclusion
	Acknowledgments
	References

