
DiSh: Dynamic Shell-Script Distribution

Tammam Mustafa
MIT

Konstantinos Kallas
University of Pennsylvania

Pratyush Das
Purdue University

Nikos Vasilakis
Brown University

Abstract
Shell scripting remains prevalent for automation and data-
processing tasks, partly due to its dynamic features—e.g.,
expansion, substitution—and language agnosticism—i.e., the
ability to combine third-party commands implemented in any
programming language. Unfortunately, these characteristics
hinder automated shell-script distribution, often necessary for
dealing with large datasets that do not fit on a single computer.
This paper introduces DISH, a system that distributes the exe-
cution of dynamic shell scripts operating on distributed filesys-
tems. DISH is designed as a shim that applies program analyses
and transformations to leverage distributed computing, while
delegating all execution to the underlying shell available on
each computing node. As a result, DISH does not require modi-
fications to shell scripts and maintains compatibility with exist-
ing shells and legacy functionality. We evaluate DISH against
several options available to users today: (i) Bash, a single-
node shell-interpreter baseline, (ii) PASH, a state-of-the-art
automated-parallelization system, and (iii) Hadoop Streaming,
a MapReduce system that supports language-agnostic third-
party components. Combined, our results demonstrate that
DISH offers significant performance gains, requires no devel-
oper effort, and handles arbitrary dynamic behaviors pervasive
in real-world shell scripts.

1 Introduction

Unix and Linux shell scripting remains prevalent—8th most
popular language on GitHub in 2022 [20]—for data process-
ing, system orchestration, and other automation tasks. Part of
this prevalence can be attributed to a unique combination of
features: (1) powerful and language-agnostic primitives for
composing components available in any programming lan-
guage; (2) dynamic features such as command substitution,
variable expansion, and state reflection on the file system;
and (3) a wide range of useful components called commands,
available in the broader environment and tailored to specific
tasks. These features enable the composition of succinct and
powerful programs on a single computer (§2).

Tab. 1: Available options for scaling out shell programs. Com-
patibility: support unmodified shell scripts. Granularity: support
fine-grained distribution. Expressiveness: support arbitrary dynamic
behaviors. Agnosticism: support components in any programming
language. Equivalence: behavior equivalence with existing shells.

Approach Co
mp

ati
bil

ity
Gr

anu
lar

ity
Ex

pre
ssi

ven
ess

Ag
no

stic
ism

Eq
uiv

ale
nce

Examples
Distributed Shells □ ■ ■ ■ □ [14, 18, 63]

POSH ■ ■ □ ■ □ [49]
Cluster Comp. Frameworks (CCF) □ ◪ □ □ □ [44, 57, 68, 71]
Language-agnostic CCFs □ ◪ □ ■ ■ [25, 30]
Job Scheduling Tools ■ □ □ ■ ■ [19, 29, 58, 69]
Other languages □ ■ ■ □ □ [16, 60, 66]
DISH ■ ■ ■ ■ ■

Unfortunately, these features also hinder automated shell-
script scale-out to multiple computers. Such scale-out is often
necessary not only to accelerate computations, but also to
compute over data that either do not fit on a single computer
or are naturally distributed across multiple computers.
State of the art: Shell users dealing with large datasets that
do not fit on a single computer are left with only a few options
(Tab. 1). One option is to use a distributed shell [14, 18, 63].
Distributed shells require rewriting scripts manually and only
support a small subset of UNIX features—often with limited,
if any, dynamic features and varying support for composition
constructs. A recent distributed shell named POSH [49] can
handle a subset of shell scripts without rewriting—although
that subset is limited to dataflow-only computations and also
does not include arbitrary dynamic shell behaviors. In addi-
tion, since POSH is a shell reimplementation, it is not behav-
iorally equivalent with existing shells and thus risks break-
ing ported scripts. A second option is to rewrite (parts of)
the script in a cluster-computing framework [11, 44, 68, 71].

These only support pure computations (e.g., batch, stream),
require manual rewriting, and only rarely [25, 30] support
language-agnostic components. Another option is job schedul-
ing tools [19, 29, 58, 69], but these operate at a coarse granu-
larity and do not leverage parallelism available in individual
commands. Yet another option is to rewrite scripts in lan-
guages that support distribution [3, 40, 42, 66], foregoing the
shell’s succinctness and language agnosticism. To summa-
rize, these options operate on a subset of the shell, require
significant manual effort, risk breaking correctness, or—most
often—suffer from a combination of these limitations (see §8
for more details).
Dynamic shell-script distribution: This paper presents
DISH, a system designed to scale out shell scripts operat-
ing on distributed filesystems while maintaining full POSIX
compatibility. DISH satisfies all requirements in Table 1: it
operates on existing shell scripts; it distributes scripts at the
granularity of individual commands; it handles arbitrary dy-
namic shell features such as substitution and expansion; it
allows the use of commands and utilities of any language; and,
most importantly, it is behaviorally equivalent to Bash.

DISH first instruments the execution of a script to identify
regions that may benefit from distribution. At runtime, it com-
piles these regions to an intermediate representation which it
then optimizes to introduce appropriate parallelism, buffering,
communication, and coordination. DISH then executes each
compiled region in a distributed fashion using the same shell
interpreter, components, and data as the original script.
Implementation and results: DISH is implemented as a
shim layer (rather than a shell) that wraps and orchestrates the
(completely unmodified) user shell, delegating all execution to
the underlying shell available on each computing node. This
design hides distribution from the user and avoids modifying
the underlying shell interpreter: the user thinks that their orig-
inal script is being executed (but faster); each underlying shell
is given a part of the distributed script to execute. As a result,
DISH achieves a new milestone in automated shell-script dis-
tribution: it offers significant performance benefits, it avoids
modifications to shell scripts, and it maintains full POSIX
compatibility. Additionally, this modular design allows fur-
ther research and improvements without modifications in the
underlying shell.

We characterize DISH’s performance on a 4-node on-
premise cluster and a 20-node cloud deployment using 76
scripts—including ones not trivially expressible in mod-
ern distributed computing frameworks, such as scripts with
for loops, side-effects, and complex third-party components.
DISH surpasses the speedups achieved by production-grade
systems on existing benchmarks and extends speedups to
new ones: it achieves significant speedups over (1) Bash (avg:
13.6×; max: 136.3×), a single-node shell-interpreter base-
line; (2) PASH (avg: 8.9×; max: 108.8×), a shell-script par-
allelization system; and (3) Hadoop Streaming (avg: 7.2×;

max: 32.3×), a cluster computing framework that supports
language-agnostic components and shell scripts. Moreover,
whereas Hadoop Streaming does not support 27/76 scripts and
requires rewriting 7/76 scripts, DISH runs all scripts without
any modifications; in fact, DISH is able to execute the entire
POSIX shell test suite, only diverging in one error code out
of thousands of assertions.
Paper outline and contributions: The paper begins with
an example and overview (§2) of DISH’s use and techniques.
Sections 3–6 present DISH’s key components:
• Dynamic orchestration (§3): DISH parses, pre-processes,

expands, and orchestrates its input script to enable dynamic
distribution at runtime.

• Compilation (§4): During script execution, DISH compiles
certain regions to an intermediate representation and applies
a series of optimizations.

• Distribution (§5): DISH distributes each region to a set of
workers in a way that promotes co-location of processing
primitives and the data blocks these operate on.

• Runtime support (§6): DISH bundles additional runtime
primitives supporting correct and efficient communication
in the context of distributed shell script execution.

The paper then presents DISH’s evaluation (§7) and related
work (§8), before concluding (§9).
DISH limitations: DISH currently does not tolerate failures
such as worker aborts or network partitions. In such occasions,
users are expected to rerun their scripts similar to how they
do in non-distributed executions: due to the shell’s dynamic
features and its support for third-party components, users of-
ten re-run failing scripts from the start. The current DISH
prototype does not implement support for security features
such as encryption and containment.
Availability: All the work described in this paper has
been implemented and incorporated into PASH—an MIT-
licensed project—and is available by the Linux Foundation at
https://github.com/binpash/dish.

2 Background, Example, and Overview

DISH allows everyday shell scripts to reap the benefits of dis-
tributed computing: execute on data that do not fit on a single
machine, often also speeding up expensive computations.
Intended use: DISH is designed to support a variety of use
cases, depending on the details of the distributed environment
on which the system is executing. The most common case
is one where input data are downloaded and stored in a dis-
tributed file system such as HDFS1 and then processed using

1The choice of HDFS is not binding. DISH could work on top of any
distributed file system (e.g., NFS or Alluxio [35]) that exposes the locations
of file blocks. To achieve performance benefits due to co-location, there also
needs to be available compute on the nodes that host that file system.

https://github.com/binpash/dish

various analyses. This is useful for datasets that do not fit on a
single computer, that are naturally distributed across multiple
computers, or that can be processed faster in a data-parallel
fashion. DISH will distribute the computation appropriately,
often running data-parallel instances on multiple machines
and multiple processors per machine. DISH also supports hy-
brid operation where data resides on both distributed and local
file systems; this is useful for computations that contain CPU-
intensive stages over datasets that do not necessarily reside
on distributed file systems.
Example script: Fig. 1 shows a shell script that calculates
maximum and average temperatures across the US, on datasets
hosted on the National Oceanic and Atmospheric Adminis-
tration (NOAA). The script is split into three parts: (p. 1)
an 11-stage pre-processing pipeline to download data from
NOAA and store them on HDFS, with the data range con-
trolled upon invocation via dynamic arguments $1 and $2; (p.
2, 3) two 5-stage pipelines calculating and storing maximum
and average temperatures to the local file system.

HDFS is a distributed file system for handling large data sets
on commodity hardware. Scripts like the one in Fig. 1 that pro-
cess files stored in distributed file systems spend most of their
execution time moving files across the network. On a 4-node
cluster (§7) and 3.6GB of input, running just hdfs dfs -cat

takes 346s; computing pipeline 2 (maximum temperature)
only adds 6s. This phenomenon is due to pipeline parallelism:
the execution time of all concurrently executing commands is
mostly shadowed by hdfs dfs -cat.
Opportunities for scale-out: There are ample opportunities
for improving the performance of this script. Since all parts
contain stages that operate on large datasets, we should be
able to execute (at least some of) their stages in a data-parallel
fashion. For example, we should parallelize commands that
process their input independently, such as cut and grep, by
having them operate in parallel over partial inputs.

Additionally, carefully colocating computation and data
should also improve performance. For example, we should
schedule the data-parallel execution of the aforementioned
cut and grep instances on machines that store the respective
data segments. Directly operating on distributed file segments,
rather than gathering and processing data on a subset of the
machines, eliminates most data-movement overheads.

Finally, the execution of program fragments that do not
depend on each other could become concurrent: since parts
2 and 3 are independent on each other, we should be able to
overlap their execution in a task-parallel fashion.
Key challenges: Unfortunately, exploiting these opportuni-
ties to scale out execution automatically is particularly chal-
lenging in the context of the shell. First, exposing opportunities
at the level of individual commands such as cut and grep is
challenging—and this is why prior systems often focused on
coarser, script-level or job-level granularity [19, 69].

Second, pervasive dynamic features, file-system introspec-

NOAA=${NOAA:-http://ndr.md/data/noaa/}
TEMPS=${TEMPS:-/noaa/temps.txt}
hdfs dfs -mkdir /noaa

Pipeline 1: Download temperature data
and store to HDFS
seq $1 $2 | sed "s;^;$NOAA;" |
sed 's;$;/;' | xargs -r -n 1 curl -s | grep gz |
tr -s ' \n' | cut -d ' ' -f9 |
sed 's;^\(.*\)\(20[0-9][0-9]\).gz;\2/\1\2\.gz;' |
sed "s;^;$NOAA;" | xargs -n1 curl -s |
gunzip | hdfs dfs -put - $TEMPS

Pipeline 2: Compute maximum temperature
over all data
hdfs dfs -cat $TEMPS | cut -c 89-92 | grep -v 999 |
sort -rn | head -n1 > max.txt

Pipeline 3: Compute average temperature
over all data
hdfs dfs -cat $TEMPS | cut -c 89-92 | grep -v 999 |
awk "{ t += \$1; i++ } END { print t/i }" > avg.txt

Fig. 1: Example script. Downloading a temperature dataset, storing
on a distributed file system, and running analysis to extract statistics.

tion, and other side-effects impede traditional distribution ap-
proaches based on static transformation—this is why prior
shell-script distribution work [25, 49] focuses on side-effect-
free dataflow subsets. These challenges are compounded by
the presence of more elaborate control flow such as for loops,
break, and trap statements present in ordinary shell scripts.

Third, behavioral equivalence with existing shells is practi-
cally unattainable, especially with shell reimplementations—
after all, even production-grade shells such as Bash and zsh
diverge subtly in their POSIX behavior [23]. A new distributed
shell [14, 49] has little hope of not breaking some scripts.
DISH overview: To overcome these challenges DISH (1)
extracts details about the behavior of commands through com-
mand annotations, (2) deals with dynamic features and side-
effects by analyzing scripts at runtime using dynamic orches-
tration, and (3) achieves behavioral equivalence with Bash
by only performing script transformations and delegating ex-
ecution to the underlying interpreter. DISH is designed to
dynamically orchestrate, compile, schedule, and support the
execution of shell scripts (Fig. 2). DISH’s orchestration (§3)
kicks in when a potentially distributable script region is iden-
tified, saves a snapshot of the user’s shell environment (vari-
ables, configuration) and invokes the DISH compiler with the
candidate region (Fig. 2a). The compiler analyzes this region
and if possible, translates it to a dataflow graph—which it then
optimizes to introduce parallelism, buffering, etc. (§4), finally
passing it off to the scheduler (Fig. 2b); or aborts compilation
(Fig. 2d) because it cannot guarantee that the region is pure,

script
Dynamic (§3)
Orchestration User Shell

Compiler (§4) Scheduler (§5)

Annotations
(§4.1)

Node

Worker

Shell

Node

Worker

Shell

(a)

(b)

(d)
(c) (c)

(c)

(e)

(e)

(e)

Fig. 2: DISH architecture overview. Steps: (a) compile script
region; (b) schedule compiled dataflow; (c) send dataflow subgraphs
to workers; (d) compilation failed, fall back to original region; and
(e) execute script region (compiled or original).

i.e., side-effect-free. The scheduler (§5) divides the compiled
dataflow graph into different subgraphs which it sends to avail-
able cluster workers (Fig. 2c). In response to these execution
requests, workers apply a second pass of optimizations to bet-
ter utilize available resources, translate the dataflow graph
back to a shell script (Fig. 2e), load the snapshot of the shell
environment stored by the orchestrator, and execute the script
using the local, unmodified shell interpreter (§6).
Applying DISH: DISH preprocesses the script in Fig. 1 to
identify script regions that could benefit from distribution—in
this case, all three pipelines. It then replaces each of these
regions with calls to the dynamic orchestrator and attempts
to distribute them at runtime. During execution, the orches-
trator queries the DISH compiler to determine whether a re-
gion is pure and thus distributable: if the compiler succeeds,
it translates the region to a dataflow graph. Since regions
contain arbitrary black-box commands, DISH cannot analyze
them directly. Instead, it employs a command specification
framework that contains partial specifications of command
invocations such as their inputs and outputs. For example,
DISH’s compiler uses these specifications to determine that
hdfs dfs -cat /noaa/temps.txt reads from the HDFS file
/noaa/temps.txt and writes to stdout. Once a region is in
dataflow form, DISH applies transformations to distribute it.

Fig. 3 shows the distribution stages for pipeline 2 (maxi-
mum temperature). DISH first detects operations on HDFS
files (i.e., HDFS cat) and expands each distributed file to
its segments (datablocks), often stored on different physical
machines. Informed by command annotations, DISH applies
parallelization transformations: commands like cut and grep

are parallelizable directly and can be executed on the machine
with the raw input datablock. The scheduler then splits the
compiled graph into subgraphs and maps them to workers
in a data-aware fashion. Finally, each worker translates the
graph back to a shell script, adds additional runtime primitives
(commands), and executes it locally.

hdfs cat cut/temps.txt grep sort head max.txt

(a) HDFS file expansion

cut
/n1/block1

grep sort head max.txt

/n2/block2

(b) Parallelization

cut/n1/block1 grep sort
head max.txt

/n2/block2 cut grep sort
sort -m

Graph splitting and
worker assignment

cut/n1/block1 grep sort head max.txt

/n2/block2 cut grep sort

sort -m

Worker 1

Worker 2

Host

(c)

Fig. 3: DISH dataflow graph stages. (a) HDFS files are expanded
to sequences of blocks. (b) the graph is parallelized based on the
command specifications. (c) the scheduler splits the graph and assigns
subgraphs to workers.

The result? DISH drops the execution of pipeline 2 from
352s to 6s while maintaining full behavioral equivalence and
requiring no modifications to the user shell.

3 Dynamic Shell Orchestrator

To facilitate adoption, an important desideratum in the design
of DISH is to achieve behavioral equivalence with the under-
lying shell interpreter. To achieve this, DISH is not designed
to operate as another shell, but rather wraps the user’s exist-
ing shell interpreter and the shell interpreters on the worker
machines. As a result, DISH hides parallelization and dis-
tribution from both the user and the underlying shells: the
user thinks that their original script is being executed—just
faster—and each underlying shell simply executes a standard
non-distributed shell script. This allows DISH to achieve ex-
ceedingly high compatibility with the underlying shell imple-
mentation (§7.3), while also minimizing maintenance costs
since updates and modifications on the underlying shell are
reflected in DISH without any change.

Fig. 4 shows an overview of the structure of DISH’s dy-
namic orchestration. To achieve dynamic shell script orches-
tration without any shell-interpreter modification, DISH opts
for a light-weight script instrumentation pre-processing step: it
instruments potentially distributable regions with invocations
to the orchestration engine. It chooses regions with the goal
of maximizing distribution benefits: intuitively, it focuses on
commands and pipelines rather than control-flow statements
and variable assignments. However, the choice of these region
boundaries is not binding—the preprocessor just needs to be
precise enough to determine potential regions, but DISH will
eventually decide whether or not (and if yes, how) to distribute

a candidate region at runtime. The preprocessor first parses the
original script, it then replaces the relevant program regions
with orchestration prefixes, and then un-parses (emits) it back
as an instrumented script that is given for execution to the
user’s shell interpreter.

The instrumented script then makes calls to the orchestra-
tion engine. The orchestration engine is itself a shell script
coordinating with the compiler and worker manager and at-
tempting to distribute the upcoming region (see §4 and 5 for
details). If it succeeds, it runs the distributed version of the
region. If it aborts, it just falls back to the original region,
executing it normally. Reasons for aborting include the re-
gion being side-effectful, e.g., modifying some environment
variable, or lacking relevant command annotations.
Preprocessor: The preprocessor searches for maximal poten-
tially distributable regions by processing the AST bottom-up,
combining distributable subtrees when they are composed
using constructs that do not introduce scheduling constraints
(e.g., &, |). When a region cannot outgrow a certain subtree,
DISH replaces it with a call to the orchestration engine. If the
region is successfully compiled (at runtime), DISH translates
it to a dataflow representation—a convenient and well-studied
model amenable to transformation-based optimizations [26].
At a later point, DISH running on each node translates the in-
strumented AST resulting from the compilation back to shell
code and passes it to the underlying shell for execution.
Parsing library: DISH invokes parsing and unparsing rou-
tines frequently, and therefore needs them to be very effi-
cient. To that end, it uses an internal Python implementa-
tion [32] of POSIX-shell-script parsing and unparsing based
on libdash [22, 23]. The DISH parser contains several opti-
mizations such as caching, inlining, and careful array append-
ing to achieve improved performance.
Orchestration engine: DISH’s orchestration engine is de-
signed to maintain the original script behavior and minimize
runtime overhead—as it is invoked multiple times per script.
The engine is a reflective shell script: it coordinates trans-
parently with the compiler to determine whether or not to
parallelize a script by inspecting the state of the shell and that
of the broader system. DISH constantly switches between two
execution modes when executing scripts: (1) conventional
shell mode, where scripts execute in the original shell context,
and (2) DISH mode, where the runtime reflects on shell state
and invokes the compiler to determine whether to execute
the original or an optimized version of the target region. To
switch from shell mode to DISH mode, the engine saves the
state of the user’s shell; to switch back, it restores the state of
the user’s shell. The state of a shell is quite complex: apart
from saving and restoring variables, DISH must account for
various shell flags along with other internal shell state (e.g., the
previous exit status, working directory). During an invocation,
the engine first switches to DISH mode, communicates with
the compiler and scheduler to determine whether a region can

User Shellscript Preprocessor

State (vars, files)
Parsing lib

orch/ed
script

Orch. Engine

executing
script

Cluster
Workers

Fig. 4: Dynamic orchestration overview. DISH instruments scripts
with calls to the orchestration engine, which passes program frag-
ments to the worker manager at run-time.

be safely distributed, and it then switches back to shell mode
to execute the original or distributed version of the script.
Environment sharing: The distributed version of the script
region might execute on a different shell (or even machine).
Therefore, a challenge that DISH needs to address is to make
sure that all regions execute in the correct environment—
including access to the latest variable values and function
definitions. To achieve that the engine takes a snapshot of
the environment right before execution. It then transfers the
snapshot to the distributed workers, which they load before
executing the incoming script fragment. This is safe to do
since successful distribution of a region implies that it is pure
(and therefore does not affect the environment), and thus the
snapshot will be valid until the region finishes execution.
String expansion: To correctly determine if a script region
is safe to distribute, the compiler needs to expand all strings in
that region. Since DISH performs compilation and distribution
of each script region at runtime, right before execution, it
has access to all the latest variables and system state to fully
expand all strings in the region. DISH only implements a
common and safe subset of all available expansions, and avoids
implementing side-effectful expansions that have the risk of
affecting the environment (e.g., ${x=foo}: set x to foo if x

is unset). Note that DISH keeps expansion local: it does not
expand regions succeeding the target region, as these might
depend on the execution of the target region.

4 Compiler

This section describes the compiler of DISH, which builds on
the PASH parallelizing compiler [64]. The compiler is given
the AST of an input script fragment and information about
the commands in that fragment (§4.1). It then attempts to
transform it to a dataflow graph (§4.2), an intermediate repre-
sentation amenable to parallelization transformations. If the
compiler succeeds in transforming a script region to a paral-
lel dataflow graph, that graph is then passed to the scheduler
which then decides how to map subgraph components to the
available worker nodes. As the compiler operates at runtime
in a just-in-time fashion, it exploits ample opportunities for
parallelization even across subgraphs (§4.3).

4.1 Command Annotations
DISH needs to support analyses and transformations over
third-party commands, without access to their source code.
To achieve this, DISH uses annotations á la PASH [64] and
POSH [49], capturing information about a command invoca-
tion’s parallelizability class, inputs, and outputs. Command
annotations act as an intermediate layer that provides restricted
but sufficient information about the behavior of a command to
analysis and transformation systems like DISH. They also en-
able reuse, as they are not tied to a particular analysis and can
thus be reused by different tools. For this work, DISH reuses
the set of annotations developed by the authors of PASH [64]
extended annotations for commands that appear in the evalua-
tion of DISH (§7).

A command annotation in DISH encodes information at the
level of individual command invocations, i.e., precise instanti-
ations of a command’s flags, options, and arguments. Among
other information, annotations determine how a command
invocation affects its environment, and specifically whether
it is pure, i.e., whether it only affects its environment by
writing and reading to and from a well-defined set of files—
information which DISH uses when translating commands
to and from dataflow nodes (§4.2). For example, the an-
notation for grep can be used to extract that the script frag-
ment grep -f dict.txt src.txt > out.txt contains two in-
put files dict.txt and src.txt and one output file out.txt.
This knowledge of input and output files is used by DISH to
enable location-aware distribution, by scheduling the compu-
tation on nodes that contain relevant data blocks. Additionally,
annotations describe parallelization opportunities—e.g., that
grep "pattern" src.txt processes each line of src.txt in-
dependently and thus can be parallelized at a line boundary.

4.2 Dataflow Model
The core of DISH’s compiler is an order-aware dataflow model
that captures pure shell script regions that read from a well-
defined set of input files and write to a well-defined set of
output files—i.e., they do not modify their environment in any
other way. This model is expressive enough to capture a shell
subset used pervasively in data processing scripts [26].

In this model, nodes represent commands and edges rep-
resent files, pipes, named FIFOs, and file descriptors. The
model is order-aware in the sense that it keeps informa-
tion about the order in which nodes read from their in-
puts, which is important for the script’s semantics. For ex-
ample, grep "pattern" in1.txt - in2.txt first reads from
in1.txt, then from its standard input, and then from in2.txt.
This order awareness allows DISH to perform transforma-
tions that optimize execution of a script—e.g., by exposing
parallelism—but preserve its original behavior.
Translation workflow: Given an AST representation of an
input script region, the compiler uses annotations to deduce

whether commands are pure i.e., they only affect their environ-
ment through a well-defined set of output files, and attempts to
transform them to dataflow nodes. If all commands in the re-
gion are pure the compiler transforms the region to a dataflow
graph. It then applies transformations (described below), op-
timizing the graph to expose parallelism and improve the
script’s performance. Finally, it serializes the graph back to a
(now optimized) shell script, by translating every node back to
a command and connecting them all together with appropriate
channels (e.g., FIFOs, RFIFOs, redirections).
Transformations: DISH’s transformations enable data-
parallel execution by replicating nodes in the graph and adding
appropriate split and merge nodes around them. They apply
a pass over the graph to remove pairs of inverse nodes—i.e.,
pairs of nodes whose semantic effects cancel out but whose per-
formance effects are additive—for example, a concatenation-
style merge followed by a linear split. For commutative com-
mands, i.e., commands that produce the same output irregard-
less of their input-line order, DISH applies transformations that
pack and unpack metadata across the graph—achieving better
performance by avoiding unnecessary blocking and buffer-
ing. Finally, to improve the flow of data across the graph,
DISH applies additional transformations that inject hybrid
memory-disk buffer nodes in points in the graph that are likely
to become bottlenecks.
Remote file resources and HDFS files: To support scripts
that perform data analysis on a combination of HDFS and
local files, DISH extends the dataflow model with remote-file
resources (RFRs) that encode file blocks in different nodes.
RFRs usually represent blocks of files that are partitioned and
replicated in HDFS, and contain information about the location
of the data in the distributed environment. This information
could contain multiple locations to support replication, and is
used by the scheduler to assign script fragments to different
workers. When the DISH compiler comes across an HDFS
file path, it queries HDFS to determine the locations of its file
blocks and then expands that file to a sequence of RFRs, each
of which represents a block.

4.3 Dynamic Dependency Untangling (DDU)
Scripts often contain regions that are independent, i.e., they
have different (file) working sets. Independent regions could
potentially run in parallel, better utilizing computational re-
sources and improving the execution times of the scripts in
which they belong. However, inferring independence stati-
cally and ahead of time is challenging as shell scripts make
extensive use of dynamic features. Figure 5 shows an example
script that contains independent fragments but also features
dynamic behavior. This script iterates over all files in an HDFS
directory, compresses them using gzip, and finally stores them
as independent files.

Determining independence statically in this script would

for item in $(hdfs dfs -ls -C ${IN});
do

output_name=$(basename $item).zip
hdfs dfs -cat $item |

gzip -c > $OUT/$output_name
done

Fig. 5: Example of independent regions. This shell script com-
presses all files in a directory—but each iteration results in an inde-
pendent body region that can be executed in parallel.

require inferring values of environment variables (like IN

and OUT) and the state of the file system, e.g., hdfs dfs -ls.
DISH’s dynamic orchestration (§3) circumvents this challenge
by making distribution decisions during the execution of the
script when environment variables and the file system state
are known. DISH further exploits this by discovering inde-
pendent dataflow regions at runtime and executing them in
parallel—even if they were not parallel in the original script.

When DISH successfully compiles a dataflow region (at
runtime), it knows that the region is pure and therefore can
determine the region’s inputs and outputs—and it does so for
free, without additional analysis or inference stages. DISH then
uses this information to check for read-write or write-write de-
pendency conflicts with regions that are running concurrently.
If none is found, DISH passes the region to the scheduler,
which orchestrates distributed execution, and then immedi-
ately continues the execution of the script until it reaches the
next dataflow region. Whenever the compilation of a dataflow
region fails, DISH cannot safely detect the input and output
information of this region—and thus it needs to wait until
every previous region is done executing to ensure that no
dependency will be violated.

Since DDU is done at runtime it is both sound, i.e., it does
not execute dependent fragments concurrently, and precise, i.e.,
it offers significant benefits due to improved parallelism and
resource utilization—especially for scripts that do not contain
highly data-parallelizable commands, such as the commands
in the aforementioned compression script (Fig. 5). Compared
to analyses over static languages, DDU cannot identify global
optimizations such as reordering the final command in the
script to run first. This lack of optimality is not specific to
DDU, but applies to any shell script analysis; in fact, as far as
we know there is no sound and precise static analysis for shell
scripts.

5 Distributed Scheduling

This section describes how DISH’s scheduler distributes a
compiled script to a set of workers. The scheduler is given
a dataflow graph that is already parallelized and has HDFS
files expanded to sequences of remote file resources (RFRs)
representing their blocks. The task of the scheduler is then to
distribute this graph with the goal of optimizing performance

cmd

cmd

aggregator

Worker 1

cmd cmd cmd cmdr_write r_read

Worker 2

Worker 1

Worker 2

Worker 3 cmd

cmd

aggregator

Worker 2

Worker 1

cmd cmd

Worker 1 Worker 1

/fifo

Host

cmd cmd

Worker 1

Fig. 6: (Top) Remote writes and reads added during distributed
scheduling. (Mid) Worker-first aggregation. (Bot) Named FIFO tele-
portation.

by both utilizing available resources and moving computation
close to the data. Currently the scheduler knows about the
workers in the cluster ahead of time using a configuration file.

The scheduler makes a decision on how to split the graph
based on a policy that optimizes performance through co-
location of data blocks and the commands that execution over
them. The scheduler processes the top-level dataflow graph to
generate a set of subgraphs, one for each worker and one for
the host machine executing the script. It then replaces edges
corresponding to communication channels (e.g., FIFOs, pipes)
at the boundaries of each subgraph with remote channels—
adding a remote write node on the sender side and a remote
read node on the receiver side (see Fig. 6, Top). It also in-
serts remote reads for subgraph nodes that access files stored
on remote workers. The final generated subgraph represents
the script fragment that is passed for execution to the user
shell running on each worker: the compiled script handles all
the redirection to and from local files and the standard input,
output, and error streams to and from the worker.
Data-aware scheduling policy: The highest performance
overhead when executing distributed shell scripts is networked
data movement across workers. DISH addresses this over-
head by introducing a greedy scheduling policy that allocates
subgraphs in a way that attempts to minimize data move-
ment across workers. If a data file (or block) is available on a
worker, then DISH maps the maximal dataflow subgraph that
starts from that file to that worker—i.e., scheduling as much
of the processing as possible on the worker. The scheduler
also tracks the amount of work that each worker currently
has scheduled, which can vary due to dynamic dependency
untangling (§4.3): if a data file is replicated across multiple
workers, DISH chooses the worker with the least amount of
pending work to execute that subgraph.
Worker-first aggregation: The distributed dataflow graphs
that DISH executes often contain aggregation (i.e., merge)

nodes, similarly to the reduce stages in Hadoop Streaming.
Regardless of the worker on which the aggregation is per-
formed, data from different workers will need to be combined
onto a single worker and thus these dataflow nodes will neces-
sarily result in data movement. DISH prioritizes performing
aggregation on one of the participating workers, because work-
ers already contain a subset of the data used in the aggregation
(see Fig. 6, Mid). This optimization is particularly beneficial
for scripts that filter and aggregate data, often containing com-
mands such as grep and uniq, because any filtering stages
prior to aggregation result in reduced data transfer.

It is worth noting that, absent additional information about
commands [49], the location of aggregators involves chal-
lenging trade-offs not addressable with a single optimization
policy. For scripts that include aggregators that do not reduce
data sizes, DISH’s worker-first aggregation optimization risks
transferring more data. As DISH’s evaluation confirms (§7),
however, worker-first aggregation results in performance ben-
efits for most scripts.
Delegated script concretization: DISH’s scheduler sends
workers dataflow subgraphs, encoded in DISH’s intermediate
representation, instead of concrete shell scripts ready for exe-
cution. Each dataflow subgraph contains holes that workers
are expected to fill in, based on the specifics of their local envi-
ronment. This choice simplifies DISH’s distributed execution,
as the scheduler does not need to have up-to-date information
about several worker details such as the temporary directo-
ries they use. Additionally, this choice enables better resource
utilization in a heterogeneous environments with different
worker capabilities: a worker can apply another optimization
pass to the dataflow subgraph it receives to better manage and
utilize its resources.
Named FIFO teleportation: Scripts often use named FI-
FOs to share data between concurrently executing processes.
Named FIFOs introduce a performance challenge, because
they are local files that reside on the host machine where the
script was executed. Therefore, by default, all data that would
normally go through named FIFOs in the original execution
would now have to go back and forth between workers and
the machine for which the script was developed. DISH ad-
dresses this challenge by observing that named FIFOs are
ephemeral, i.e., they maintain no data after the execution of
a dataflow region. Based on this observation, DISH migrates
named FIFOs to workers closer to the data, eventually deleting
the migrated versions after the dataflow region has finished
executing (see Fig. 6, Bot). This transformation, termed FIFO
teleportation, improves performance by avoiding unnecessary
data movement in scripts that use FIFOs.

6 Runtime Support

DISH has to address several runtime challenges: communi-
cation among workers, identification of HDFS data block lo-

cations, and correctness in view of HDFS blocks split inde-
pendently of newlines—an assumption necessary for several
dataflow transformations. This section describes several com-
ponents of DISH’s runtime that address the above challenges.
Remote FIFO channel: As described earlier (§5), connec-
tions between dataflow nodes are instantiated using UNIX
FIFOs in a single-machine setting. Unfortunately, FIFOs do
not support networked operation and thus cannot cross worker
boundaries. To address this challenge, DISH introduces a re-
mote FIFO primitive (RFIFO) that is implemented in Go and
uses socket-based communication. RFIFOs are intended to
operate identically to FIFOs, i.e., implement the semantics of
dataflow graph edges, but with support for operation over the
network. They have a unique identifier and two ends—a read
end and a write end.

Since shell streams are lazy, i.e., a producer blocks until its
consumer requests input, the network link is often not fully uti-
lized, lowering throughput and risking introducing significant
latency. To avoid these throughput and latency challenges,
DISH adds two buffer nodes to the dataflow graph: one before
the write end of the RFIFO, to allow uninterrupted access to
data, and one after the read end of the RFIFO, to force the
read to request data. This lazy-to-strict optimization main-
tains correctness and improves performance in most cases; in
rare cases, it may lead to unnecessary data transfer between
nodes—e.g., when there is a head command right after the
read end of an RFIFO.
Port discovery service: As transformations and optimiza-
tions are applied during the execution of a script—contrary
to most other distributed environments—DISH’s scheduler
cannot statically predict which ports will be available at run-
time for RFIFOs at each worker: different scripts and script
fragments running concurrently during a single execution may
collide on port usage. To address that, each DISH worker im-
plements a port discovery service (PDS) that can be accessed
by remote FIFOs to (1) advertise their port, and (2) discover
the port that their other end uses. The discovery service is
implemented in Go with gRPC [61] and supports a few remote
procedure calls (RPCs), central among which are a put call for
advertisement and a get call for discovering the port of a re-
mote end. RFIFOs are extended with gRPC clients to advertise
ports among local PDS or identify the ports corresponding to
their other end by querying the PDS of the respective worker.
By deferring port selection until runtime execution, DISH’s
port discovery service facilitates loose subgraph coupling and
simplifies remote subgraph execution on multiple workers.
HDFS data retrieval: During transformations, the DISH
compiler (§4) needs to retrieve information about HDFS paths
to expand them into block sequences. This expansion happens
on a critical runtime path and thus needs to be efficient. A
prior implementation of DISH invoked this expansion on every
HDFS path using a shell command—by wrapping fsck, a
command offered by HDFS API for querying the health of

the disk in the cluster, returning information about a file and
its partitioning into blocks. This implementation ended up
incurring significant latency (> 1s), and thus DISH switched
to the web API reducing expansion to sub-10ms latency.
Enforcing logical block boundaries: A key challenge when
processing separate file blocks in HDFS is the mismatch be-
tween compiler assumptions about the block shape and how
blocks are actually stored in HDFS: HDFS blocks might not
be split on newline boundaries, but the parallelizing transfor-
mations performed by the DISH compiler (§4) assume that all
blocks are logically separated by newlines. This assumption
is crucial and depends on the way commands process their
input, e.g., sort processes its input line by line, and therefore
would require a significantly more complex parallelization
transformation if its input could be split at arbitrary points.
Developing complex custom parallelization transformations
for each command would be infeasible in practice due to the
sheer number of available commands and would not allow
DISH to reuse the parallelization transformations developed
for PASH [64].

Instead of relaxing the compiler assumption, DISH ad-
dresses the mismatch by ensuring it holds during script exe-
cution using additional runtime support. DISH implements
a distributed file reader (DFR) primitive that runs as a ser-
vice on every worker. The DFR service ensures that parallel
dataflow nodes only process batches that are split in newline
boundaries, independent of how the actual physical blocks
are split—providing the illusion of a logical block that ends
at a newline to its consumer. Given a distributed file path,
DFR reads the local file or block from the worker’s disk going
beyond the first newline character in its block. If the block
is not terminated with a new line, then the DFR communi-
cates with the reader of the next block (and potentially any
readers after that), returning a complete logical block to its
consumer. When a compiled dataflow graph is translated back
to a script, DISH prefixes file paths with a command invoking
a DFR client that communicates with the relevant DFR ser-
vice to retrieve the relevant logical block. Both service and
client are implemented in Go, communicating using gRPC
and protobufs [21].

7 Evaluation

We are interested in evaluating two aspects of DISH: (1) its
performance, and (2) its compatibility with Bash.
Experiments: We perform four experiments using sev-
eral real-world shell scripts taken from a variety of sources
(Tab. 2). The first two experiments focus on the performance
gains (§7.1) achieved by DISH’s distribution on (1) a 4-node
on-premise cluster, and (2) a 20-node cloud deployment—
both over a variety of benchmarks and workloads. We com-
pare DISH’s performance against (1) GNU Bash [50], the
de facto sequential shell-script execution environment; (2)

Tab. 2: Benchmark summary. Summary of all the benchmarks
used to evaluate DISH, and their characteristics.

Benchmark Scripts Pure HS LOC Input Source
1 Classics 10 7/10 123 3G [5, 6, 31, 39, 59]
2 Unix50 34 30/34 142 21G [7, 34]
3 COVID-mts 4 4/4 79 3.4G [62]
4 NLP 21 - 306 120 books [9]
5 AvgTemp 1 1/1 31 3.6G [68]
6 MediaConv 2 - 35 0.8 & 0.4G [49, 56]
7 LogAnalysis 2 - 63 0.7 & 1.3G [49, 56]
8 FileEnc 2 - 44 1.3G [41]

Apache Hadoop Streaming [25] (AHS), a production-grade
distributed data-processing framework that supports language-
agnostic executables; and (3) in the case of the 4-node setup,
PASH [32, 64], a shell-script parallelization system from the
Linux Foundation. PASH’s parallelism benefits make it a likely
alternative to DISH for smaller clusters, where DISH’s an-
ticipated benefits of distribution might be smaller, but this
likelihood diminishes as the size of the cluster grows.

The last two experiments evaluate DISH’s dynamic depen-
dency untangling (§7.2) and DISH’s correctness (§7.3), i.e.,
its compatibility with respect to Bash across all scripts and
the POSIX shell test suite.
Benchmarks: We use 8 sets of real-world benchmarks, total-
ing 76 shell scripts and 823 LoC. Classics and Unix50 contain
classic and recent (c. 2019) scripts that make heavy use of
UNIX and Linux built-in commands. COVID-mts contains
four scripts used to analyze real telemetry data from mass-
transit schedules during a large metropolitan area’s COVID-19
response. NLP contains several scripts from UNIX-for-poets,
a tutorial for developing programs for natural-language pro-
cessing out of UNIX and Linux utilities. AvgTemp contains a
large script downloading and processing multi-year temper-
ature data across the US. MediaConv contains two scripts
that process, transform, and compress video and audio files.
LogAnalysis contains two scripts that apply typical system-
administration and network-traffic analyses over log files. Fi-
nally, FileEnc contains aliases that encrypt and compress files.
Baselines and implementations: Bash, PASH, and DISH
executed every shell script completely unmodified. Apache
Hadoop Streaming (AHS) posed significant expressiveness
limitations. Only 42 scripts in Classics, Unix50, COVID-mts,
and AvgTemp out of 76 scripts can be implemented natively
(Tab. 2, col. Pure HS). Another 7 scripts required manual
porting by splitting them into mappers, reducers, and addi-
tional components: These components were not available na-
tively by AHS—for example, components for reading from
two pipelines for diff.sh and for sorting after the reducer for
bigrams.sh (both in Classics). During porting, we put signifi-
cant care to avoid limiting AHS’s parallelism: we modified
3 AHS scripts in Classics to help HS introduce additional

Classics
Unix50

COVID-mts NLP

10
0

10
1

10
2

S
pe

ed
up

 (l
og

-s
ca

le
)

AvgTemp

MediaConv1

MediaConv2

LogAnalysis1

LogAnalysis2
FileEnc1

FileEnc2

Hadoop-streaming
PaSh
DiSh

Fig. 7: DISH performance on a 4-node cluster. DISH speedup (vs. PASH and Hadoop Streaming whenever possible) over Bash for Tab. 2
rows 1–4 (left, box) and 5–8 (right, bar) (Cf.§7.1). (Log y-axis; higher is better.)

parallelism—for example, we manually expanded tr -cs into
tr -c | grep -v (both stateless). None of the scripts in NLP,
MediaConv, or LogAnalysis can be implemented in AHS as
they perform processing in loops, the iterations of which de-
pend on the files in a statically indeterminable directory (see
Fig. 5) and are therefore not expressible in AHS. We attempted
to replace the body of the loop with an AHS invocation but
the startup overhead ended up dwarfing the execution time by
a factor of ten on average.
Hardware & software setup: The 4-node cluster consists
of four 6-core Intel(R) Core(TM) i7-10710U CPU nodes each
with 64GBs of RAM, located in the same room and con-
nected with an average bandwidth of 90.8 Mbits/sec. The
20-node deployment consists of xl170 Cloudlab [15] nodes,
each equipped with 10 × Intel Core E5-2640 2.4 GHz CPUs
and 8GB of memory. Single-machine shells (Bash & PASH)
were evaluated on a machine with 20 × 2.80GHz Intel(R)
Core(TM) i9-10900 CPUs and 32GB of memory.

For ease of deployment and reproducibility, we used Docker
swarm to deploy (1) HDFS, and (2) the DISH runtime. The con-
tainers were created using the standard Ubuntu 18.04 image.
We use Bash v.5.0.3, PASH v.6e2ecba, and HDFS/Hadoop
streaming version 3.2.2. We explicitly disabled checksum
verification from HDFS in all configurations, scripts, and mea-
surements. All scripts were executed completely unmodified,
using environment variables, loops, and other shell constructs.
To minimize statistical non-determinism we repeated the ex-
periments several times noticing imperceptible variance.

The DISH implementation comprises 6784 lines of Python
(preprocessor, compilation server, expansion, compiler, and
parser), 1011 lines of shell code (JIT engine and various utili-
ties), and 1174 lines of C (commutativity primitives, and other
runtime components). All counts include only semantically
meaningful lines of code.

7.1 Performance
How does DISH’s distributed perform on small on-premise
clusters and multi-node cloud deployments, and how does it
compare to state-of-the-art systems?

Tab. 3: DISH performance in 20-node cloud deployment. DISH
speedup over Hadoop Streaming for scripts that AHS supports.
DISH speedup over AHS
Benchmark Avg Min 25th 50th 75th Max
Classics 2.74× 0.92× 2.41× 2.60× 2.85× 6.55×
Unix50 6.64× 0.91× 2.85× 5.38× 10.4× 16.9×
COVID-mts 10.4× 6.64× 8.91× 9.27× - 16.8×
AvgTemp 7.85× - - - - -

Results: Fig. 7 (note the log y-axis) shows the performance
of DISH, PASH, and AHS on a 4-node on-premise cluster
across all benchmarks of Tab. 2. Box plots (left) show re-
sult quartiles for multi-benchmark suites (Tab. 2, rows 1–4)
and bars (right) show results for individual scripts (Tab. 2,
rows 5–8). Across all benchmarks, DISH achieves an average
speedup of 13.6× (vs. 2.55× for PASH and 2.1× for AHS) and
a maximum speedup of 136.3× (vs. 7.8× for PASH and 8.6×
for Hadoop Streaming). The average execution time of all
scripts on Bash is 299s, ranging from 1s for 34.sh in Unix50
to 2840s for nfa-regex.sh in Classics. DISH is only slower
than Bash (737s vs 568s) in the case of diff.sh from Classics,
for which AHS is even slower (766s). DISH achieves a per-
formance comparable to Bash (1-2s) in 4.sh and 34.sh from
Unix50, because both perform a short-running head.

Tab. 3 shows the speedup of DISH over AHS on a 20-node
Cloudlab deployment across all scripts implementable with
AHS (Classics, Unix50, COVID-mts, AvgTemp). Across all
benchmarks, DISH achieves an average speedup of 6.17× and
a maximum speedup of 16.95× over AHS. DISH is slower
than AHS only for three scripts: nfa-regex.sh from Classics
(0.92×), 29.sh and 30.sh from Unix50 (0.91× and 0.94×).

Across all scripts in both deployments, DISH’s overheads
(startup cost, dynamic orchestration, preprocessing, compila-
tion, scheduling) take less than 1 second.
Discussion: DISH is faster than Bash, PASH, and AHS across
Tab. 2’s suites (rows 1–4) with respect to average, and across
all of Tab. 2 individual benchmarks (rows 5–8)—often by a
significant margin (e.g., 134× for AvgTemp against PASH).

NLP

10
0

10
1

10
2

S
pe

ed
up

 (l
og

-s
ca

le
)

MediaConv1

MediaConv2

LogAnalysis1

LogAnalysis2
FileEnc1

FileEnc2
AvgTemp

DiSh no DDU
DiSh

Fig. 8: Dynamic dependency untangling. DISH speedup over Bash
when toggling DDU (higher is better).

DISH’s (and PASH’s) speedup over Bash is due to parallelism.
DISH’s speedup over PASH is due to DISH’ co-location of data
and computation: PASH cannot offload computation and thus
first gathers all data onto a single machine—a time-consuming
stage—and then starts processing in parallel. DISH is slower
than Bash only for diff.sh, because (1) it is not highly par-
allelizable and (2) it performs no filtering, i.e., its output is
the same size as its input. In contrast to Bash, which simply
fetches all data and processes it locally, DISH tries to allocate
most commands on the workers, but this leads to increased
data movement since moving data between workers does not
avoid sending the whole output to the client.

DISH’s speedup over AHS is due to a few different reasons.
One reason is the increased expressiveness of DISH’s dataflow
model: DISH accepts and parallelizes complete scripts, discov-
ering more opportunities for parallelism. Many of the AHS
scripts are broken into multiple map and reduce stages, often
leaving pipeline parallelism and data parallelism unexploited.
Another reason is DISH’s dynamic independence discovery,
which allows for additional parallelism and better utilization
of resources—in ways that AHS does not support; we zoom
into these benefits below (§7.2). In the Cloudlab deployment,
DISH is (marginally) slower than AHS in only two cases: (1) a
script that is embarrassingly parallel and thus implementable
in AHS using only a single mapper (nfa-regex.sh), and (2)
two scripts in Unix50 that see slightly more benefits from
our manual, hand-optimized AHS rewrite than they do from
DISH’s automated distribution.

We found porting scripts to AHS a serious challenge. Many
scripts required significant manual effort, resulted in multiple
error-and-fix cycles, and led to script size increases. To over-
come AHS’s expressiveness limitations, we had to modify a
few scripts in unintuitive ways—often combining plain Bash
scripts with AHS mappers and reducers. These modifications
made scripts significantly more complex and compounded
the effort to test and maintain them. Instead, DISH distributed
scripts successfully without any such challenges.

7.2 Dynamic Dependency Untangling
What is the speedup due to dynamic dependency untangling?

Results: Figure 8 shows DISH’s speedup over Bash with
and without dynamic dependency untangling (DDU, § 4.3).
It excludes scripts that contain a single dataflow, for which
DDU is not applicable. DISH’s average speedup over DISH-
w/o-DDU is 6.9×, ranging between 1.2–13.9×.
Discussion: Enabling DDU improves performance signif-
icantly across all relevant scripts, by running independent
dataflow regions in parallel. This allows DISH to expose paral-
lelism not just within data pipelines but across them, improv-
ing utilization. DDU also improves the distributed execution
of scripts that operate on many files, many or most of which
are small enough to fit on a single HDFS block.

DDU is the main reason why DISH gets an edge over Bash
on scripts that (1) have implicit independences that are not
highly parallelizable, and (2) operate on small data that incur
imperceptible data-movement costs. Examples of such scripts
include MediaConv1 and FileEnc2.

7.3 Correctness
What is DISH’s output compatibility with respect to Bash?
Results: To check the correctness of DISH across all bench-
marks, we check that its stdout and exit status are equivalent
to the ones produced by Bash. Across all benchmarks, totaling
over 650 millions lines (18GB) of output, DISH produces the
same output and exit status as Bash.

We additionally execute the complete POSIX shell-test
suite to evaluate DISH’s compatibility with Bash. Out of all
relevant tests, DISH diverges from Bash in two cases and only
with respect to the exit status it returns: both exit with an
error, but Bash returns 1 whereas DISH returns 127, which
is outside of the POSIX mandated exit status range between
1–125. The reason is that DISH always invokes the underlying
Bash interpreter using the -c flag to set the $0 variable, and
Bash (contrary to most other shells, e.g., dash, ksh, mksh, sash,
Smoosh, yash, zsh) exits with 127 in particular failing cases
when called with -c.
Discussion: All benchmarks in Tab. 2 were executed with
DISH repeatedly. After hundreds of runs over several weeks,
we observed dozens of different execution orders. Comparing
the output on every run provides significant confidence about
the correctness of the resulting distributed execution. The
POSIX test suite mostly evaluates the correctness of dynamic
orchestration (§3), as it does not feature many opportunities for
parallelization and features no opportunities for distribution.

8 Related Work

DISH is related to a large body of prior work.
Distributed data processing: Several environments assist in
the development of distributed software systems: distributed
computing frameworks [11,44,45,57,71] and domain-specific

languages [3, 8, 13, 40, 42] simplify the development of dis-
tributed systems that fall under certain computational classes
such as batch processing, stream processing, etc. These sys-
tems deal with many of the challenges of distribution, but
require developers to (re)write their computations manually in
models that differ significantly from UNIX shell programming.

Hadoop Streaming and Dryad Nebula are abstractions that
allow using third-party language-agnostic components similar
to the UNIX shell, atop cluster-computing engines (Hadoop
and Dryad, respectively). Both require their users to under-
stand and rewrite their shell scripts using the abstractions
provided by each framework. DISH can operate on arbitrary
shell scripts automatically, without requiring any manual effort
from its users.
Distributed shells and tools: Several packages expose com-
mands for specifying parallelism and distribution on mod-
ern UNIXes—e.g., qsub [19], SLURM [69], calls to GNU
parallel [58]. Different from DISH, their effectiveness is
predicated upon explicit and careful invocation and is lim-
ited to embarrassingly parallel (and short) programs. Often,
these commands provide options to support an array of spe-
cial sub-cases—a stark contradiction to the celebrated UNIX
philosophy. For example, parallel contains flags such as
--skip-first-line, -trim, and --xargs, that a UNIX user can
achieve using head, sed, and xargs; it also includes other pro-
grams with complex semantics, such as the ability transfer
files between computers, separate text files, and parse CSV.
DISH embraces the UNIX philosophy, attempting to rewrite
shell programs to leverage distributed infrastructure.

Several shells [14, 38, 56] add primitives for non-linear
pipe topologies—some of which target distribution. Here too,
however, developers are expected to manually rewrite scripts
to exploit these new primitives.

POSH [49] is a recent shell for scripts operating on NFS-
stored data. It brings pipeline components closer to the data
on which they operate, but operates only on shell pipelines
that are fully expanded—i.e., ones that do not use dynamic
features. DISH operates on shell scripts that use (1) any POSIX
composition primitive, and (2) the full set of dynamic features
present in the UNIX shell.
Distributed operating systems: There is a long history of
networked and distributed operating systems [4, 12, 43, 46,
48, 51–53, 67]. These systems offer abstractions that (1) are
similar, but not identical, to the ones offered by UNIX, (2)
operate at a lower level of abstraction (e.g., that of system calls,
rather than shell primitives), and (3) often aim at simply hiding
the network rather than offering scalability benefits. Instead of
implementing full-fledged distributed operating system, DISH
shows that a thin but sophisticated rewriting-based shim can
operate on completely unmodified programs, avoid requiring
any user input, and achieve significant speedups by executing
fragments in parallel across nodes.
Annotation-based transformations: Recent systems [47,

65,70] lower the developer effort of scaling out program com-
ponents by performing program transformations based on
user-provided annotations. These systems operate in single-
language environments, offering declarative DSLs for tuning
the semantics of the resulting distributed program. DISH uses
a similar approach, leveraging command annotations from
prior projects [49, 64], but operates on-the-fly—within an en-
vironment that makes extensive use of dynamic features and
that allows combining components from multiple languages.

PASH-JIT [32] parallelizes scripts by dynamically interpos-
ing between a shell script and the underlying shell interpreter.
This kind of interposition offers significant performance ben-
efits without jeopardizing correctness, i.e., maintains compat-
ibility with the underlying shell interpreter. DISH uses similar
insights and interposition architecture, but operates on a dis-
tributed multi-node setting and addresses challenges that are
specific to this setting—such as integration with a distributed
file system and distributed environment passing.

Cloud build systems: Several cloud build systems [1, 2, 17,
27] distribute and parallelize the execution of large builds by
constructing dependency graphs using dependency informa-
tion explicitely specified by their users. Contrary to these sys-
tems, DISH operates on general shell programs without exploit-
ing domain-specific information—e.g., build dependencies—
and by taking a just-in-time approach that resolves dependen-
cies during the execution of the script.

Correct distribution of dataflow graphs: The DFG is a
prevalent model in several areas of data processing, including
batch- and stream-processing. Systems implementing DFGs
often perform optimizations that are correct given subtle as-
sumptions on the dataflow nodes that do not always hold,
introducing erroneous behaviors. Recent work [28, 33, 37, 54]
attempts to address this issue by performing optimizations
only in cases where correctness is preserved, or by testing
that applied optimizations preserve the original behavior.
DISH uses its dynamic orchestration to achieve compatibil-
ity with the underlying shell and then achieves correct distri-
bution on a per-region level by building on prior work on
provably correct transformations for order-aware dataflow
graphs [26]. Similarly to other automated shell script transfor-
mation works [49, 64], DISH’s correctness is predicated upon
the correctness of the annotations describing commands.

Resurgence of shell research: Recent shell research [10,
23, 24, 32, 36, 41, 49, 55, 56, 64] highlights renewed interest
in shell scripting both as a vehicle for impactful research and
as a target worthy of scientific attention. We see DISH as a
natural continuation of the insights and research behind re-
cent systems [24, 26, 32, 49, 64], allowing other researchers
to leverage DISH’s POSIX-compliant high-performance dy-
namic distribution in their future work.

9 Discussion

Programmability: An important consideration with any au-
tomated system is how it affects programmability, and specifi-
cally the ability to debug a misbehaving program or to test a
program for correctness. DISH does not negatively affect the
developer experience compared to a shell: a developer can use
a combination of the many existing tools and commands—e.g.,
head and grep—as they would normally do to inspect their
script’s output and determine what is wrong. When it comes
to shell scripts intended for distributed environments, DISH in
fact improves developer experience: a developer may use the
same set of commands for local or distributed interactions—
e.g., to inspect and project parts of a file, regardless of whether
that file is stored in HDFS or the local system. Furthermore,
developers using DISH can reap the scalability benefits of
distribution in analyzing or testing scripts by automatically
scaling out load to multiple computers.
Command annotations: DISH’s transformations depend
on the existence of command annotations. To maintain sound-
ness, DISH will avoid compiling and distributing a script re-
gion if some command lacks annotations. To increase the
distributability of their scripts, DISH users could opt for more
constrained commands—e.g., cut instead of awk for data
projection—and thus enjoy tighter annotations and more ap-
plicable optimization transformations. The correctness of ap-
plying DISH’s transformations depends on the correctness of
these annotations, and thus annotations are currently expected
to be authored by command developers or other experts (but
not script developers). Developing automation for testing or
synthesizing correct annotations is an interesting avenue for
future research that would benefit several systems that use
them—e.g., DISH, PASH [64], and POSH [49].
Fault tolerance: DISH does not tolerate failures such as
worker aborts or network partitions (§1). In such cases users
are expected to rerun their scripts as shell users normally do in
the non-distributed case. Achieving fault tolerance in the con-
text of general shell scripts is in fact particularly challenging
due to the prevalence of black-box components that may per-
form arbitrary side-effects. A fault-tolerant version of DISH
should be able to track all these side-effects and re-execute
them appropriately when a script fails. This is in contrast to
constrained cluster computing frameworks such as MapRe-
duce and Spark that have precise information about the inputs
and outputs of purely functional program components en-
abling simplified re-execution of dependency graphs (lineage)
in the presence of failures. DISH’s design however combined
with incremental script execution [10] creates an opportunity
for addressing this challenge with a hybrid approach: employ
conventional fault tolerance approaches for script fragments
with annotation information, and instrument the rest of the
script to capture and replay its side-effects appropriately in
cases of failure.

Conclusion: DISH is the first system able to distribute un-
modified shell scripts that use (1) any POSIX composition
primitive, (2) the full set of dynamic features present in the
UNIX shell, and (3) distributed file systems such as HDFS.
DISH uses a dynamic orchestration approach that instruments
a given script and dynamically distributes it at runtime to
then execute it using the underlying shell interpreter. As a re-
sult, DISH avoids modifications to shell scripts and maintains
compatibility with existing shells and legacy functionality.
Evaluated against several alternatives available to users today,
DISH offers significant speedups, requires no developer effort,
and handles arbitrary dynamic behaviors pervasive in shell
scripts. DISH is open-source software, available by the Linux
Foundation.

Acknowledgments
We would like to thank Ayush Bhardwaj, Felix Stutz, Han-
nah Gross, Lily Tsai, Malte Schwarzkopf, Michael Greenberg,
Neil Ramaswamy, the Brown Systems Group, the NSDI 2023
reviewers, and our shepherd, Rebecca Isaacs, for discussions
and feedback on the paper. This material is based upon work
supported by DARPA contract no. HR00112020013 and no.
HR001120C0191, and NSF award CCF 2124184.

References

[1] Bazel dynamic execution. https://bazel.build/
remote/dynamic, 2022. [Online; accessed Feb 1,
2022].

[2] Google cloud build. https://cloud.google.com/
build/docs/overview, 2022. [Online; accessed Feb
1, 2022].

[3] Peter Alvaro, Neil Conway, Joseph M Hellerstein, and
William R Marczak. Consistency analysis in bloom: a
calm and collected approach. In CIDR, pages 249–260,
2011.

[4] Amnon Barak and Oren La’adan. The mosix multi-
computer operating system for high performance clus-
ter computing. Future Generation Computer Systems,
13(4):361–372, 1998.

[5] Jon Bentley. Programming pearls: A spelling checker.
Commun. ACM, 28(5):456–462, May 1985.

[6] Jon Bentley, Don Knuth, and Doug McIlroy. Program-
ming pearls: A literate program. Commun. ACM,
29(6):471–483, June 1986.

[7] Pawan Bhandari. Solutions to unixgame.io, 2020. Ac-
cessed: 2020-04-14.

https://bazel.build/remote/dynamic
https://bazel.build/remote/dynamic
https://cloud.google.com/build/docs/overview
https://cloud.google.com/build/docs/overview

[8] Martin Biely, Pamela Delgado, Zarko Milosevic, and
Andre Schiper. Distal: A framework for implementing
fault-tolerant distributed algorithms. In Proceedings
of the 2013 43rd Annual IEEE/IFIP International Con-
ference on Dependable Systems and Networks (DSN),
DSN ’13, pages 1–8, Washington, DC, USA, 2013. IEEE
Computer Society.

[9] Kenneth Ward Church. Unix™for poets. Notes of a
course from the European Summer School on Language
and Speech Communication, Corpus Based Methods,
1994.

[10] Charlie Curtsinger and Daniel W Barowy. Riker:
Always-Correct and fast incremental builds from sim-
ple specifications. In 2022 USENIX Annual Technical
Conference (USENIX ATC 22), pages 885–898, 2022.

[11] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simpli-
fied data processing on large clusters. Commun. ACM,
51(1):107–113, January 2008.

[12] Sean Dorward, Rob Pike, David L Presotto, Dennis
Ritchie, Howard Trickey, and Phil Winterbottom. In-
ferno. In Proceedings IEEE COMPCON 97. Digest of
Papers, pages 241–244. IEEE, 1997.

[13] Cezara Drăgoi, Thomas A Henzinger, and Damien Zuf-
ferey. Psync: a partially synchronous language for fault-
tolerant distributed algorithms. ACM SIGPLAN Notices,
51(1):400–415, 2016.

[14] Tom Duff. Rc—a shell for plan 9 and unix systems.
AUUGN, 12(1):75, 1990.

[15] Dmitry Duplyakin, Robert Ricci, Aleksander Mar-
icq, Gary Wong, Jonathon Duerig, Eric Eide, Leigh
Stoller, Mike Hibler, David Johnson, Kirk Webb, Aditya
Akella, Kuangching Wang, Glenn Ricart, Larry Landwe-
ber, Chip Elliott, Michael Zink, Emmanuel Cecchet,
Snigdhaswin Kar, and Prabodh Mishra. The design and
operation of CloudLab. In Proceedings of the USENIX
Annual Technical Conference (ATC), pages 1–14, July
2019.

[16] Jeff Epstein, Andrew P. Black, and Simon Peyton-Jones.
Towards haskell in the cloud. In Proceedings of the 4th
ACM Symposium on Haskell, Haskell ’11, pages 118–
129, New York, NY, USA, 2011. ACM.

[17] Hamed Esfahani, Jonas Fietz, Qi Ke, Alexei Kolomiets,
Erica Lan, Erik Mavrinac, Wolfram Schulte, Newton
Sanches, and Srikanth Kandula. Cloudbuild: Microsoft’s
distributed and caching build service. In SEIP. IEEE -
Institute of Electrical and Electronics Engineers, June
2016.

[18] Jim Garlick. pdsh. https://github.com/chaos/
pdsh, 2022. [Online; accessed September 15, 2022].

[19] Wolfgang Gentzsch. Sun grid engine: Towards creating
a compute power grid. In Proceedings First IEEE/ACM
International Symposium on Cluster Computing and the
Grid, pages 35–36. IEEE, 2001.

[20] Inc. GitHub. The 2021 state of the octoverse: Top lan-
guages over the years. https://octoverse.github.
com/#top-languages-over-the-years, 2021. [On-
line; accessed June 1, 2022].

[21] Google. Protocol Buffers, 2022. Accessed: 2022-06-01.
[22] Michael Greenberg. libdash. https://github.com/

mgree/libdash, 2019. [Online; accessed December 6,
2021].

[23] Michael Greenberg and Austin J. Blatt. Executable for-
mal semantics for the posix shell: Smoosh: the symbolic,
mechanized, observable, operational shell. Proc. ACM
Program. Lang., 4(POPL):43:1–43:30, January 2020.

[24] Michael Greenberg, Konstantinos Kallas, and Nikos
Vasilakis. Unix shell programming: The next 50 years.
In Proceedings of the Workshop on Hot Topics in Op-
erating Systems, HotOS ’21, page 104–111, New York,
NY, USA, 2021. Association for Computing Machinery.

[25] Hadoop. Hadoop streaming. https://hadoop.
apache.org/docs/r1.2.1/streaming.html, 2022.
[Online; accessed September 15, 2022].

[26] Shivam Handa, Konstantinos Kallas, Nikos Vasilakis,
and Martin C. Rinard. An order-aware dataflow model
for parallel unix pipelines. Proc. ACM Program. Lang.,
5(ICFP), aug 2021.

[27] Jason Hickey and Aleksey Nogin. Omake: Designing
a scalable build process. In Luciano Baresi and Reiko
Heckel, editors, Fundamental Approaches to Software
Engineering, pages 63–78, Berlin, Heidelberg, 2006.
Springer Berlin Heidelberg.

[28] Martin Hirzel, Robert Soulé, Scott Schneider, Buğra
Gedik, and Robert Grimm. A catalog of stream process-
ing optimizations. ACM Computing Surveys (CSUR),
46(4):46:1–46:34, March 2014.

[29] Lluis Batlle i Rossell. tsp(1) Linux User’s Manual.
https://vicerveza.homeunix.net/ viric/soft/ts/, 2016.

[30] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell,
and Dennis Fetterly. Dryad: distributed data-parallel pro-
grams from sequential building blocks. In Proceedings
of the 2nd ACM SIGOPS/EuroSys European Conference
on Computer Systems 2007, pages 59–72, 2007.

https://github.com/chaos/pdsh
https://github.com/chaos/pdsh
https://octoverse.github.com/#top-languages-over-the-years
https://octoverse.github.com/#top-languages-over-the-years
https://github.com/mgree/libdash
https://github.com/mgree/libdash
https://hadoop.apache.org/docs/r1.2.1/streaming.html
https://hadoop.apache.org/docs/r1.2.1/streaming.html

[31] Dan Jurafsky. Unix for poets, 2017.
[32] Konstantinos Kallas, Tammam Mustafa, Jan Bielak,

Dimitris Karnikis, Thurston H.Y. Dang, Michael Green-
berg, and Nikos Vasilakis. Practically correct, Just-in-
Time shell script parallelization. In 16th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI 22), pages 769–785, Carlsbad, CA, July 2022.
USENIX Association.

[33] Konstantinos Kallas, Filip Niksic, Caleb Stanford, and
Rajeev Alur. Diffstream: Differential output testing for
stream processing programs. Proceedings of the ACM
on Programming Languages, 4(OOPSLA):1–29, 2020.

[34] Nokia Bell Labs. The unix game—solve puzzles using
unix pipes, 2019. Accessed: 2020-03-05.

[35] Haoyuan Li. Alluxio: A virtual distributed file system.
University of California, Berkeley, 2018.

[36] Aurèle Mahéo, Pierre Sutra, and Tristan Tarrant. The
serverless shell. In Proceedings of the 22nd International
Middleware Conference: Industrial Track, pages 9–15,
2021.

[37] Konstantinos Mamouras, Caleb Stanford, Rajeev Alur,
Zachary G. Ives, and Val Tannen. Data-trace types for
distributed stream processing systems. In Proceedings
of the 40th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, PLDI 2019,
pages 670–685, New York, NY, USA, 2019. ACM.

[38] Chris McDonald and Trevor I Dix. Support for graphs of
processes in a command interpreter. Software: Practice
and Experience, 18(10):1011–1016, 1988.

[39] Malcolm D McIlroy, Elliot N Pinson, and Berkley A
Tague. Unix time-sharing system: Foreword. Bell System
Technical Journal, 57(6):1899–1904, 1978.

[40] Christopher Meiklejohn and Peter Van Roy. Lasp: a
language for distributed, eventually consistent computa-
tions with crdts. In Proceedings of the First Workshop on
Principles and Practice of Consistency for Distributed
Data, page 7. ACM, 2015.

[41] Jürgen Cito Michael Schröder. An empirical investi-
gation of command-line customization. arXiv preprint
arXiv:2012.10206, 2020.

[42] Adrian Mizzi, Joshua Ellul, and Gordon Pace.
D’artagnan: An embedded dsl framework for distributed
embedded systems. In Proceedings of the Real World
Domain Specific Languages Workshop 2018, pages 1–9,
2018.

[43] Sape J Mullender, Guido Van Rossum, AS Tanenbaum,
Robbert Van Renesse, and Hans Van Staveren. Amoeba:
A distributed operating system for the 1990s. Computer,
23(5):44–53, 1990.

[44] Derek G. Murray, Frank McSherry, Rebecca Isaacs,
Michael Isard, Paul Barham, and Martín Abadi. Na-
iad: A timely dataflow system. In Proceedings of the
Twenty-Fourth ACM Symposium on Operating Systems
Principles, SOSP ’13, pages 439–455, New York, NY,
USA, 2013. ACM.

[45] Derek G. Murray, Malte Schwarzkopf, Christopher
Smowton, Steven Smith, Anil Madhavapeddy, and
Steven Hand. Ciel: A universal execution engine for
distributed data-flow computing. In Proceedings of the
8th USENIX Conference on Networked Systems Design
and Implementation, NSDI’11, pages 113–126, Berkeley,
CA, USA, 2011. USENIX Association.

[46] John K Ousterhout, Andrew R. Cherenson, Fred Douglis,
Michael N. Nelson, and Brent B. Welch. The sprite net-
work operating system. Computer, 21(2):23–36, 1988.

[47] Shoumik Palkar and Matei Zaharia. Optimizing data-
intensive computations in existing libraries with split
annotations. In Proceedings of the 27th ACM Symposium
on Operating Systems Principles, SOSP ’19, pages 291–
305, New York, NY, USA, 2019. ACM.

[48] Rob Pike, Dave Presotto, Ken Thompson, Howard
Trickey, et al. Plan 9 from Bell Labs. In Proceedings
of the summer 1990 UKUUG Conference, pages 1–9,
1990.

[49] Deepti Raghavan, Sadjad Fouladi, Philip Levis, and
Matei Zaharia. POSH: A data-aware shell. In 2020
USENIX Annual Technical Conference (USENIX ATC
20), pages 617–631, 2020.

[50] Chet Ramey. Bash reference manual. Network Theory
Limited, 15, 1998.

[51] Richard F Rashid and George G Robertson. Accent:
A communication oriented network operating system
kernel, volume 15. ACM, 1981.

[52] Marc Rozier, Vadim Abrossimov, François Armand, Ivan
Boule, Michel Gien, Marc Guillemont, Frédéric Her-
rmann, Claude Kaiser, Sylvain Langlois, Pierre Léonard,
et al. Overview of the chorus distributed operating sys-
tem. In Workshop on Micro-Kernels and Other Kernel
Architectures, pages 39–70. Seattle WA (USA), 1992.

[53] Jan Sacha, Jeff Napper, Sape Mullender, and Jim McKie.
Osprey: Operating system for predictable clouds. In
IEEE/IFIP International Conference on Dependable Sys-
tems and Networks Workshops (DSN 2012), pages 1–6.
IEEE, 2012.

[54] Scott Schneider, Martin Hirzel, Buğra Gedik, and Kun-
Lung Wu. Safe data parallelism for general streaming.
IEEE Transactions on Computers, 64(2):504–517, Feb
2015.

[55] Jiasi Shen, Martin Rinard, and Nikos Vasilakis. Auto-
matic synthesis of parallel unix commands and pipelines
with kumquat. corr abs/2012.15443 (2021). arXiv
preprint arXiv:2012.15443, 2021.

[56] Diomidis Spinellis and Marios Fragkoulis. Extending
unix pipelines to dags. IEEE Transactions on Computers,
66(9):1547–1561, 2017.

[57] Craig A Stewart, Timothy M Cockerill, Ian Foster, David
Hancock, Nirav Merchant, Edwin Skidmore, Daniel
Stanzione, James Taylor, Steven Tuecke, George Turner,
et al. Jetstream: a self-provisioned, scalable science
and engineering cloud environment. In Proceedings of
the 2015 XSEDE Conference: Scientific Advancements
Enabled by Enhanced Cyberinfrastructure, pages 1–8,
2015.

[58] Ole Tange. Gnu parallel—the command-line power tool.
;login: The USENIX Magazine, 36(1):42–47, Feb 2011.

[59] Dave Taylor. Wicked Cool Shell Scripts: 101 Scripts for
Linux, Mac OS X, and Unix Systems. No Starch Press,
2004.

[60] Elixir Core Team. Elixir. https://elixir-lang.
org/.

[61] The gRPC Authors. grpc, 2018. Accessed: 2019-04-16.
[62] Eleftheria Tsaliki and Diomidis Spinellis. The real statis-

tics of buses in athens. https://bit.ly/3s112R5,
2021.

[63] Junichi Uekawa. dsh. https://www.netfort.gr.jp/
~dancer/software/dsh.html.en, 2022. [Online; ac-
cessed September 15, 2022].

[64] Nikos Vasilakis, Konstantinos Kallas, Konstantinos
Mamouras, Achilles Benetopoulos, and Lazar Cvetković.
Pash: Light-touch data-parallel shell processing. In Pro-
ceedings of the Sixteenth European Conference on Com-
puter Systems, EuroSys ’21, page 49–66, New York, NY,
USA, 2021. Association for Computing Machinery.

[65] Nikos Vasilakis, Ben Karel, Yash Palkhiwala, John Son-
chack, André DeHon, and Jonathan M. Smith. Ignis:
Scaling distribution-oblivious systems with light-touch
distribution. In Proceedings of the 40th ACM SIGPLAN
Conference on Programming Language Design and Im-
plementation, PLDI 2019, pages 1010–1026, New York,
NY, USA, 2019. ACM.

[66] Robert Virding, Claes Wikström, and Mike Williams.
Concurrent Programming in ERLANG (2Nd Ed.). Pren-
tice Hall International (UK) Ltd., Hertfordshire, UK, UK,
1996.

[67] Bruce Walker, Gerald Popek, Robert English, Charles
Kline, and Greg Thiel. The locus distributed operat-
ing system. ACM SIGOPS Operating Systems Review,
17(5):49–70, 1983.

[68] Tom White. Hadoop: The Definitive Guide. O’Reilly
Media, Inc., 4th edition, 2015.

[69] Andy B Yoo, Morris A Jette, and Mark Grondona. Slurm:
Simple linux utility for resource management. In Work-
shop on Job Scheduling Strategies for Parallel Process-
ing, pages 44–60. Springer, 2003.

[70] Gina Yuan, Shoumik Palkar, Deepak Narayanan, and
Matei Zaharia. Offload annotations: Bringing heteroge-
neous computing to existing libraries and workloads. In
2020 USENIX Annual Technical Conference (USENIX
ATC 20), pages 293–306, 2020.

[71] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das,
Ankur Dave, Justin Ma, Murphy McCauley, Michael J.
Franklin, Scott Shenker, and Ion Stoica. Resilient dis-
tributed datasets: A fault-tolerant abstraction for in-
memory cluster computing. In Proceedings of the
9th USENIX Conference on Networked Systems Design
and Implementation, NSDI’12, pages 2–2, Berkeley, CA,
USA, 2012. USENIX Association.

https://elixir-lang.org/
https://elixir-lang.org/
https://bit.ly/3s112R5
https://www.netfort.gr.jp/~dancer/software/dsh.html.en
https://www.netfort.gr.jp/~dancer/software/dsh.html.en

	Introduction
	Background, Example, and Overview
	Dynamic Shell Orchestrator
	Compiler
	Command Annotations
	Dataflow Model
	Dynamic Dependency Untangling (DDU)

	Distributed Scheduling
	Runtime Support
	Evaluation
	Performance
	Dynamic Dependency Untangling
	Correctness

	Related Work
	Discussion

