
Efficient Module-Level Dynamic Analysis for Dynamic
Languages with Module Recontextualization

Nikos Vasilakis
MIT CSAIL

USA
nikos@vasilak.is

Grigoris Ntousakis
TU Crete
Greece

gntousakis@isc.tuc.gr

Veit Heller
Unaffiliated
Germany

veit@veitheller.de

Martin C. Rinard
MIT CSAIL

USA
rinard@csail.mit.edu

ABSTRACT
Dynamic program analysis is a long-standing technique for ob-
taining information about program execution. We present module
recontextualization, a new dynamic analysis approach that targets
modern dynamic languages such as JavaScript and Racket, enabled
by the fact that they feature a module-import mechanism that loads
code at runtime as a string. This approach uses lightweight load-
time code transformations that operate on the string representation
of the module, as well as the context to which it is about to be bound,
to insert developer-provided, analysis-specific code into the mod-
ule before it is loaded. This code implements the dynamic analysis,
enabling this approach to capture all interactions around the mod-
ule in unmodified production language runtime environments. We
implement this approach in two systems targeting the JavaScript
and Racket ecosystems. Our evaluation shows that this approach
can deliver order-of-magnitude performance improvements over
state-of-the-art dynamic analysis systems while supporting a range
of analyses, implemented on average in about 100 lines of code.

CCS CONCEPTS
• Software and its engineering → Software maintenance tools;
Dynamic analysis; Frameworks.

KEYWORDS
Dynamic, Runtime, Analysis, Instrumentation, Recontextualization,
Performance, Security

ACM Reference Format:
Nikos Vasilakis, Grigoris Ntousakis, Veit Heller, and Martin C. Rinard. 2021.
Efficient Module-Level Dynamic Analysis for Dynamic Languages with
Module Recontextualization. In Proceedings of the 29th ACM Joint European
Software Engineering Conference and Symposium on the Foundations of Soft-
ware Engineering (ESEC/FSE ’21), August 23–28, 2021, Athens, Greece. ACM,
New York, NY, USA, 12 pages. https://doi.org/10.1145/3468264.3468574

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ESEC/FSE ’21, August 23–28, 2021, Athens, Greece
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8562-6/21/08.
https://doi.org/10.1145/3468264.3468574

1 INTRODUCTION
Dynamic program analysis is a technique for monitoring, under-
standing, and potentially intervening in program behavior during
its execution. To cite only a few examples, dynamic analysis has
been used to infer invariants, check security constraints, and extract
performance characteristics [3, 29].

Existing dynamic analyses often impose significant runtime
overhead—Jalangi [33] and RoadRunner [13], for example, report
No-Op analysis overheads on the order of 26–32× and 52×, respec-
tively. For this reason, dynamic analysis is typically deployed for
offline use—collecting and replaying traces offline or stressing a
program with test inputs in a test environment. The fact that pro-
duction environments can differ considerably from offline or testing
environments can significantly impair the utility of dynamic analy-
ses that are deployed only during development or testing. Software
vulnerabilities, for example, can be latent during development and
test, but exploitable only in production [30].

We present a new point in the dynamic analysis design space:
module recontextualization is an approach that operates at the gran-
ularity of modules, with the resulting analysis code executing at
module boundaries.1 We emphasize that the goal is not to supplant
existing techniques that operate at the granularity of instructions
or procedures [22, 26, 33]. The goal is instead to provide a coarse
analysis with low enough overhead (in practice, 2–3% runtime
overhead) to enable always-on, uniform deployment during de-
velopment, testing, and production. In effect, we trade off detail
and precision to drive down the overhead while still supporting
meaningful analyses (§5).

Module recontextualization leverages characteristics of modern
dynamic languages to dynamically transform each module when it
is loaded, applying both source code and object transformations. It
thus requires no changes to the runtime environment and works
with completely unmodified dynamic language production run-
times. The analyses themselves are written in the same language as
the analyzed program, preserving developer knowledge, expertise,
libraries, and code, and enabling the development of analyses that
analyze analysis code. These analyses remain fully under developer
control, with module recontextualization supporting targeted anal-
ysis of only selected modules and dynamic toggling on and off as
the application executes.

1We use the terms module and library interchangeably.

https://doi.org/10.1145/3468264.3468574
https://doi.org/10.1145/3468264.3468574

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Nikos Vasilakis, Grigoris Ntousakis, Veit Heller, and Martin C. Rinard

This paper makes the following contributions:
• Module recontextualization: It presents module recontextu-
alization, a new dynamic analysis approach that targets modern
dynamic languages and operates at the boundaries of (selected)
modules. Module boundaries go well beyond externally invoked
entry points—they also include referenced global variables, basic
language features such as import and export statements, and
basic type constructors such as Number and Array constructors.

• Two implementations: It presents a two-part implementation
of module recontextualization, Lya, that targets the JavaScript
and Racket ecosystems. The discussion of the opportunities and
challenges associated with implementing Lya as a pluggable
library for modern dynamic languages focuses on the JavaScript
port, and discusses Racket when the two diverge.

• Case studies and evaluation: It presents an evaluation of Lya
for three dynamic analyses of JavaScript applications and li-
braries, including a read/write/execute security analysis, a per-
formance analysis, and a run-time type invariant discovery anal-
ysis. It shows that Lya incurs runtime overheads under 5% and
can accurately detect issues and application characteristics that
would surface only in production environments—e.g., invalid
accesses during object deserialization, performance pathologies
in regular-expression matching, and dynamic type anomalies.

Lya has been open-sourced and is available for download from
GitHub:

https://github.com/andromeda/lya

2 BACKGROUND, EXAMPLES, AND SCOPE
We first present background on module systems employed by dy-
namic languages (§2.1). We then describe three use cases that high-
light the kinds of the analyses the Lya is designed to support (§2.2).
We finish by identifying the scope of Lya, i.e., the characteristics of
the environments and analyses that it targets (§2.3).

2.1 Module Systems
Modules encapsulate reusable functionality. This functionality typ-
ically falls into two categories: it either (i) comes bundled with the
language, possibly wrapping operating-system interfaces such as
the file system in a way that is system-agnostic and conforms to
the language’s conventions, or (ii) is provided by other developers
sharing code others might find useful. Consider a module named
simple-math below, providing a few mathematical functions such
as mul and div: 2

let math = {
mul: (a, b) => a * b,
div: (a, b) => {
import("log").info(b);
return a / b } };

// ...some more code...
exports = math;

This module may be imported and used by a different module, as
shown below:
2In the background and design sections of the paper, we write import; in the sections
describing the two implementations and evaluation of Lya, we use the actual name
corresponding to the prototype in each language—e.g., require.

let m = import("simple-math");
let result = m.div(m.mul(1, 2), m.mul(3, 4));
print(result); exports = result;

From a developer’s perspective, importing a module makes its
functionality available to the calling code by means of binding its
functionality to a name in the caller’s scope. This is achieved by
some form of exporting, where the module developer expresses
which values should become available to the importing code. The
definition of a value depends on the semantics of the language.
Internally, the module may import other modules, cause side ef-
fects to the file system or the network, or even be implemented in
multiple languages.

Importing a module in a dynamic language such as JavaScript
typically involves several steps. The runtime system first locates
the module in the file system. It then reads the module and wraps
it to resolve module-local names, such as __filename in JavaScript
and __name__ in Python, to meaningful values. The wrapper is
then interpreted and evaluated using the language’s interpreter,
which might result in side effects—for example, a process.exit()
in the module’s top-level scope will exit the entire program. Finally,
the value bound to the exported interface or returned from this
interpretation (depending on the language) is made available to the
scope of the importing code.

Complications may include the use of a module cache to avoid
loading overheads and maintain consistency for modules that are
loaded multiple times from different parts of the code base. The use
of a module cache can also support recursive imports and cyclic
dependences. An increasingly common feature is to allow different
versions of the same module to co-exist in a program, to avoid
imposing one mutually exclusive choice—a paradoxical situation
known as “dependency hell”. As a result, a single import l may not
necessarily resolve to the same (version of the) module l every time.
The dual of this is also possible: two different module names may
resolve to the same identifier (i.e., point to the same cache entry).
These features can significantly complicate dynamic analyses that
operate at the granularity of modules. We further discuss these
issues, including how Lya deals with them, in Section 3.

2.2 Dynamic Analysis Examples
We next discuss three example dynamic analyses that can be per-
formed at the granularity of modules: (i) a read-write-execute se-
curity analysis, (ii) a performance-profiling analysis, and (iii) an
analysis extracting runtime type invariants.
SecurityAnalysis: The pervasive reliance on third-party libraries
has led to an explosion of supply-chain attacks [18, 20, 23, 35, 39].
Both bugs and malicious code in libraries create attack vectors, ex-
ploitable long after libraries reach their end users. Popular libraries,
depended upon by tens of thousands of other libraries or applica-
tions, can allow vulnerabilities deep in the dependency graph to
affect a great number of applications [43, 44].

Consider, for example, the recent event-stream incident [11,
30], in which a maintainer of a highly popular library inserted
code to steal Bitcoin wallet credentials from programs using that li-
brary. Heavyweight testing or instrumentation [33] would not have
helped, as event-stream activated only during production rather

https://github.com/andromeda/lya

Efficient Module-Level Dynamic Analysis for Dynamic Languages with Module Recontextualization ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

than during testing or development. Whole-program OS-level con-
tainment or system-call interposition [32], would have not helped
either as the programs importing event-stream already made use
of system calls to access the disk and network. Finally, static anal-
ysis would have been of little use, as event-stream encrypted its
malicious payload.

A module-level dynamic analysis of read/write/execute permis-
sions [40] used by this library would have detected the unusual re-
sources accessed by event-stream. Analyzing the behavior within
the library itself is not critical: if any data exfiltration is happening,
it will require calling out of the library and into the network—in
event-stream’s case, using the fs library to modify a different li-
brary and then call http from the second library. Both fs and http
are part of the standard library, built into the runtime environment.
Other examples of interfaces that are available to the entire pro-
gram include global variables, library importing, and the module
cache—all of which are accessible by any third-party library.
Performance Diagnosis: Diagnosing performance problems is a
difficult task, exacerbated by the heavy use of third-party libraries.
These libraries often work well until there is an unexpected change
in the type or characteristics of the workload [38]. In many cases,
the performance behavior of these libraries is affected by a single
unusual input.

Consider, for example, the minimatch library, a regular-expres-
sion-based file-matching utility susceptible to long delays due to
regular expressions that involve backtracking [21]. Pathological
inputs reaching minimatch, even if benign, can cause significant
performance degradation [6] deep in the dependency chain, af-
fecting also other parts of the program competing for the same
resources [7]. Developers use various techniques to understand
such problems—e.g., collecting and replaying traces against offline
versions of the system, or using statistical profiling to identify hot
code-paths. These techniques, however, require significant manual
effort: capturing traces, setting up test beds, replaying traces, an-
alyzing statistics, and debugging performance are all tedious and
time-consuming tasks, compounded by the difficulties of mapping
the results to the right third-party libraries.

A library-level profiling analysis would quickly detect any slow-
down and appropriately attribute it to the bottlenecked minimatch.
Wrapping library interfaces with profiling logic can be of aid to
constructing a model of the current workload. Such profiling could
operate at a high resolution in time and space—at every func-
tion call entering a library and on hundreds of libraries across
an application—but does not need to track detailed operations such
as direct variable accesses. Each library wrapper can collect profil-
ing statistics at its own boundary, aggregating summaries into a
global structure ordering libraries by resource consumption.
Type Invariant Discovery: Extracting type information at the
module boundary is helpful in a variety of scenarios. For example,
it can be used to identify program invariants to be preserved during
code modifications [12], or guide program learning and regener-
ation [4]. Dynamically extracted type information is particularly
relevant for dynamically typed languages that have no explicit type
information in the language.

Consider, for example, the gRPC module for serializing and de-
serializing objects [37]. To use this module, developers provide a

protocol-buffer specification describing the types of values that will
be serialized. Given a library—e.g., bignum, crypto—a developer
has to first call it manually, take note of the result’s type, and then
fill in the protobuf spec. This process has to be repeated with every
change, often due to library updates or changes in the consuming
program’s structure.

Module-level dynamic analysis could be used to discover such
type assertions or invariants. The analysis would consult the defini-
tion of a type system, capturing the type of values at the boundaries
of libraries by observing their arguments during the execution of
the program.

2.3 Scope
Lya exploits features of modern dynamic language environments,
for example dynamic module loading, runtime metaprogramming
facilities such as reflection or exposing object accesses as overload-
able functions, and runtime resolution of external references. The
basic approach is therefore not appropriate for software written in
traditional compiled languages such as C, Java, ML, or Haskell. It is
also not appropriate for traditional scripting languages such as the
Unix shell due to several challenges [14].

Because Lya operates at the granularity of modules, it targets
modern application development methodologies where applica-
tions comprise hundreds of modules, with the modules typically
reused from large open source repositories such as GitHub or npm.
These methodologies deliver applications with (i) a module decom-
position coarse enough for minimal runtime overhead, (ii) a module
decomposition fine enough to support meaningful analyses that op-
erate at the module granularity (Lya is therefore not well suited for
monolithic applications with few or no modules), and (iii) most of
the code obtained from external and potentially untrusted sources
(motivating the need for dynamic analyses that can pinpoint and
help solve security or performance issues).

Our proposed techniques work well when the recency of infor-
mation (ideally, online) is more important than the level of detail.
They meet such recency needs through a combination of factors.
First, Lya provides the ability to perform the analysis online by
operating at a coarser granularity, by using a production-optimized
runtime, and by toggling parts of the analysis on and off. Second, it
allows developers to leverage their expertise in their language of
choice—rather than introducing a new language only for analysis:
the program being analyzed and the program implementing the
analysis can only be in the same language, as the analysis trans-
formations are applied dynamically over the program by the same
runtime environment. Finally, it deconstructs programs only at
library boundaries, a natural boundary for many problems caused
(or exacerbated) by third-party libraries.

3 MODULE RECONTEXTUALIZATION
Lya starts by dynamically modifying the functionality of the mod-
ule system that is responsible for importing and loading modules:
instead of simply locating and loading a modules from the file sys-
tem, the module system yields control to Lya, which applies a series
of transformations to modules with the goal of interposing at their
boundaries. We start with an overview of Lya (§3.1), highlighting

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Nikos Vasilakis, Grigoris Ntousakis, Veit Heller, and Martin C. Rinard

several key challenges, followed by a detailed description of each
step (§3.2–3.4).

3.1 Overview
Lya operates by decomposing the program at the boundaries of
modules, applying transformations that insert analysis-specific ma-
chinery, and then carefully reassembling individual components to
maintain the original semantics:

• Decomposition: Lya starts by recursively decomposing a pro-
gram into its dependencies. This is achieved by rewiring the
language’s import function to go through Lya, resulting in Lya
walking the program’s recursive dependency structure at run-
time. During this phase, Lya has to determine the granularity
of the analysis (e.g., top-level modules, a specific module etc.) in
order to apply transformations at the correct level and map the
provided analysis hooks to the corresponding modules.

• Recontextualization: Lya then sets up the provided analysis,
by transforming each module interface, its surrounding envi-
ronment, and possibly the values passing through the module
boundary. Programmatic transformations walk and wrap each
one of these values based on their type. This phase requires solv-
ing several challenges, including enumerating all points of entry
into and exit out of a module, and swapping all original values
externally available to a module with ones that are wrapped with
interposition mechanisms.

• Reassembly Finally, Lya reassembles individual modified mod-
ules back into the program’s original structure. A key challenge
in this phase is the treatment of the module cache (§2.1), which
needs to be augmented to support multiple wrappers per module,
each capturing a part of the overall analysis.

Example—Counting Global Accesses: As the three aforemen-
tioned analyses (§2.2) are too complex to show here, we present a
smaller analysis that counts all accesses to global variables from
the simple-math module:

let fs = import("fs");
let count = {};
forevery.global.inlib(/simple-math/).analyze({

pre: (name, path, _) => {
let o = resolve(name, path);
count[o] = count[o]? count[o] + 1 : 1;

} });
process.on("exit", () => { fs.writeFileSync(

"access.json", "utf-8", JSON.stringify(count)); });

Lya-provided forevery generates a set of module identifiers. The
inlib field is a method that takes a regular expression matching
module identifiers. If not empty, pre and post hooks are called
before and after each access of the elements specified in the set.
Finally, resolve is a method for traversing an object given a path
within that object. Upon program exit, the results are written to
disk, all using the expected Node APIs.

To perform this analysis, Lya first interposes on the import call
to detect when simple-math is loaded.When loading simple-math,
Lya applies (1) a source-to-source program transformation that re-
define global identifiers as module-local ones, and (2) a dynamic

metaprogramming (i.e., runtime reflection) transformation to tra-
verse global values and create a global-indirection map specific
to the simple-math module. For every global identifier the map
holds modified global values that are wrapped such that any access
to these values from within the simple-math module is visible
by Lya, which upon access calls the corresponding pre hook. Fi-
nally, Lya interprets the transformed simple-math module using
the built-in code evaluation primitive—similar to the vanilla module
system—effectively linking the module-local identifier lookups to
the map entries that hold the modified values corresponding to
these identifiers.

The next few subsections discuss the details.

3.2 Decomposition
When a Lya-augmented program starts, it first loads the analysis file
provided by the developer. The file may specify a subset of libraries
whose boundaries are of interest or a subset of libraries that should
not be analyzed. Among other things, Lya needs to determine the
library boundaries of interest and the granularity of analysis. To
do this, it extracts an approximation of the dependency graph by
traversing library files. Using this graph, it processes the analysis
file to extract a mapping from library identifiers to analysis hooks.
It also checks for constructs not associated with libraries—for ex-
ample, whether the analysis includes global variables, library-local
constructs, standard libraries etc. Lya then proceeds to dynamically
replace the implementation of import and launch the program:
rather than simply locating and loading a library, calls to import
now yield to Lya.

For every invocation of import Lya checks the cache (§3.4) to
determine (i) if the library has already been loaded, and (ii) whether
the library has been loaded with the same analysis hooks. If both are
determined true, Lya retrieves the cached version of the library and
returns the transformed exported value. If the library was loaded
with a different analysis—say because there are different analyses
applied to different parts of a dependency tree—Lya constructs the
appropriate analysis and applies a transformation pass on a cached
copy of the unmodified library (§3.4). Otherwise, Lya first invokes
the built-in library loader to locate the library.

The process of loading new libraries includes (i) a phase of read-
ing the necessary source files and (ii) a phase of interpreting them,
interspersed by applications of transformations (§3.3). Reading files
returns a string representation of the code; interpretation uses the
language’s runtime evaluation primitives to convert the code into
an in-memory object.

Some analyses may themselves make use of global variables, li-
braries, and other analyzable constructs. As these will be part of the
same execution context, Lya must note to avoid transforming and
wrapping these constructs as part of the analysis. Lya frameworks
may also want to add analysis-specific keywords not provided by
the language. To achieve this, Lya wraps each analysis hook with
a function whose body starts by defining the expected keywords.
The precise techniques for achieving this will be made clear in the
next section (§3.3), after covering transformations; the key point
to remember is that analyses are initially represented as source
strings, similar to libraries.

Efficient Module-Level Dynamic Analysis for Dynamic Languages with Module Recontextualization ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

Mod ← {
 foo: () => {
 proc.id()
 var x ← y
 …

import Mod.foo
main ← {
 foo(1, 2);
 …

LYA
wrappers

// context
proc ← mock.proc
glob.y ← 3

// return values
mod.foo ← n(Foo)

Figure 1: Shadowing segments. Cross-module variable name
resolution (left) augmented with Lya (green boxes), which interjects
non-bypassable steps resolving to Lya-augmented values (top right:
implicit module imports; bottom right: explicit import) (Cf.§3.3).

3.3 Recontextualization
For each analyzed library, Lya needs to place hooks all around
its boundary—not just its interface entry points (Figure 1). This
is achieved in three logical steps: (i) transforming the library’s
context, a mapping from names to values that are available from
outside library, (ii) interpreting the library within this context, so
that all names bind and resolve to Lya-augmented values, and (iii)
transforming the library’s export value, i.e., the library interface,
once the interpretation is complete. Before discussing where each
transformation is applied, we show how they are applied.
Transformations: Lya’s transformations boil down to a base
transform wrap that traverses and augments values with runtime
analysis monitors. At a high level, wrap takes a valuev and analysis
fragments (α1,α2) and returns a new value v ′ that has every one
of its fields f wrapped: every f is replaced with a method f ′ that
calls fragment α1, calls f , calls fragments α2, and returns the result
of the call to f .

More specifically, wrap can be applied to any value in the lan-
guage, which can generally be a primitive, a function, or a com-
pound value—say, a list of values or an object of key-value pairs.
Transformations walk compound values from their root, processing
component values based on their types (Figure 2): (i) function values
are wrapped by closures that contain analysis-specific hooks; (ii)
object and list values are recursively transformed, with their getter
and setter methods replaced similar to function values; (iii) prim-
itive values are either transformed directly or copied unmodified
and wrapped with an access interposition mechanism. To avoid
cycles during the walk, values are added to a map that is consulted
at the beginning of each recursive call.

Direct field accesses, such as assignments, require detection
upon access. To achieve this, Lya wraps fields with an interposition
mechanism; this mechanism essentially treats direct field accesses
as function calls (see §4 for implementation details). Extending a
transformed object with a value will start with the value’s transfor-
mation. For example, if a field in a transformed object is assigned a
new value, that value has to be transformed before it is attached to
the object.

Lya allows toggling analyses on/off, changing analyses, or chain-
ing multiple analyses during the execution of the program. To
achieve this, it maintains a handle to the root of both the unpro-
cessed and the newly processed values, for further processing: the

wrap (e: Value, α: Analysis) : Value := match e with
 | {(s, v) :: vs} {(s, wrap v) :: wrap vs}
 | [v :: vs] [(wrap v) :: wrap vs]
 | λ(…args).f λ(…args).{ α1(f(α2(args))) }
 | __ interpose(α3, e)
end

→
→
→
→

Figure 2: Base transform. The algorithm (simplified) is presented
in functional style to simplify variable binding; types (object, list,
function, and primitive), used for pattern matching, are shown in
light turquoise (Cf.§3.3). The functions α1, α2, and α3 stand for the
locations of analysis hooks.

unprocessed value is used to create objects, at runtime, that run
different analyses; the new value is used to revoke or chain analyses
together.
Context Transformation: To be able to track an analysis at the
library boundary, Lya needs to provide each library with values
that are augmented with interposition wrappers—and do this for all
of the names to which a library has access. This includes global and
pseudo-global3 names provided by the language and its runtime.

To achieve this, Lya first needs to prepare a transformed copy of
the library’s context—a map from variable names that are (expected
to be) in scope to their values. Lya creates an auxiliary hash table
mapping names to transformed values. Names correspond to any
name that, by the language definition, is accessible by the library
and resolves to a value outside that library, such as globals, built-
ins, module-locals, etc. Transformed values are created by applying
wrap to values in the context, adding the provided analysis hooks.

Care must be taken with library-local variables. These are acces-
sible from anywhere within the scope of a library (similar to global
variables), but resolve to a different value for each library. Examples
include the library’s absolute filename as __name__, its exported
values, and whether the library is invoked as the application’s main
library (§2.1). Attempting to access library-local variables directly
from within Lya’s scope will fail subtly, as they will end up re-
solving to library-local values of Lya itself—and specifically, the
module within Lya that is applying the transformation. Lya solves
this problem by leaving the value empty and deferring binding for
later from within the scope of the library (see below).
Context Binding: To link the library with the newly transformed
version of its context, Lya wraps the library—still an uninterpreted
string of source code—with a closure. The closure’s body starts with
a prologue of the form:

local print = ctx.print
local error = ctx.error
// ...more entries...

These statements shadow global variable names by redefining them
as function-local ones. The closure accepts an argument ctx that
will hold the customized context (see above), assigning its entries
to their respective variable names. The prologue executes before ev-
erything else in the library. This technique leverages lexical scoping

3For example, Node introduces objects that are not part of the EcmaScript specification
into the global scope, such as process and console; similarly, Lua’s Luvit introduces
its own globals such as p() and exports.

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Nikos Vasilakis, Grigoris Ntousakis, Veit Heller, and Martin C. Rinard

to inject a non-bypassable step in the variable name resolution pro-
cess: instead of resolving to variables in the context, resolution will
first “hit” library-local values augmented with analysis monitors.

Late-bound, library-local variables, such as the absolute filename
mentioned during context creation, are the result of applying wrap
over variable names in the current scope; these names are now
bound to the correct library-local values.
Library InterfaceTransformation: Returning the library’s value
to its consumer amounts to interpreting the library, linking it with
the custom context, and applying a final transformation to its return
value. The goal of the final transformation is to track activity at
the boundary.4 This final transformation is applied for every new
consumer of the library, returning a fresh analysis wrapper. This is
due to the need for distinguishing between different boundaries of
the same library.

The treatment of this feature during reassembly is explained in
the next section (§3.4).

3.4 Reassembly
To successfully reassemble the application, Lya needs to ensure that
cross-references between libraries resolve correctly. The central
mechanism for this resolution is the library cache.

To support multiple wrappers for a single cached library, the
cache is extended by two levels (for a total of three). The reason
for adding the two levels is that libraries are usually governed
by a single context analysis but multiple interface analyses, one
for each of their consumers. A context transformation is applied
at most a few times (usually only once), whereas a return-value
transformation is applied on every import. Thus, the first level is
indexed by library identifiers (as before); the second by context anal-
ysis; and the third by analysis of the exported interfaces. For each
library, the second level contains a collection of entries correspond-
ing to mostly-transformed libraries, and the third level contains
fully transformed libraries. Mostly-transformed libraries have gone
through the entire transformation pipeline except for the last stage:
they have been interpreted and have had their context transformed
and linked, but their return value has not been processed to track
analysis of its interface.

A special entry is reserved for the original library value as a
string (§3.3), so that subsequent transformations can skip loading it
from disk. When a new analysis is applied to a library, Lya indexes
the cache by library identifier and applies the analysis-specific
wrap to the library’s context. It then adds that result to a slot in the
next layer of the cache, indexed by the analysis identifier. When
a library is already loaded, Lya indexes by analysis to retrieve the
(mostly) transformed library corresponding to this analysis. It then
applies a transformation to the library’s return value, and inserts
the (finalized) transformed library to the third layer of the cache.

4 TWO IMPLEMENTATIONS
We have implemented Lya for server-side JavaScript (Node.js v8.9.4,
about 2.5K LoC) and Racket (Racket v7.8, about 500 LoC). This
section details the JavaScript implementation, integrated into npm

4For some analyses, Lya needs to additionally augment the values going through
the library’s interface—including continuation functions passed as arguments to the
library’s methods.

and available for setup under andromeda/lya, and only refers to
Racket when the two diverge.

There are two main ways to implement Lya. The first is as a
modified version of the runtime, in which several stages of its
library-loading facility have been augmented in-place. The second
approach is to implement Lya as a third-party library (e.g., the lya
package) available by the language’s package manager. With both
approaches, the user experience is a backward-compatible, drop-in
replacement of the language’s module system indistinguishable
from the vanilla system. We went with the second approach, as
looser coupling seems to have several benefits: it does not force
Lya’s users to have a custom copy only for running analyses; it
removes Lya’s developers from the critical path of updates between
the language developers and its users; and it simplifies Lya’s com-
parison with the vanilla environment (both in terms of performance
and correctness). The primary drawback was missing a few oppor-
tunities for lowering runtime performance and development effort.
Module System Implementation: In both languages, the mod-
ule system is implemented entirely in the respective language itself,
exposing a library-local function for importing modules. Loading a
fresh module corresponds to the following five stages, all of which
are augmented by Lya: (R) Resolution: identify the file to which the
module specified corresponds, locate it in the file system, and assign
its absolute path as a module identifier. (L) Loading: depending on
the file type, identify the corresponding loader—e.g., V8 compiler
for js, JSON.parse for json etc. (W)Wrapping: wrap themodule so
that local names do not escape the module’s scope and module-local
names get resolved. (E) Evaluation: evaluate the wrapped module
in the current context, so that global names and top-level objects
get resolved correctly. (C) Caching: add the module to a handful of
module-related caches, for consistency and performance reasons.

Lya augments all of these steps. Interposing on resolution (R)
makes the module identifier available to Lya without affecting the
module resolution algorithm. If the module’s type corresponds to a
module that can be analyzed by Lya, Lya fetches the correspond-
ing analysis during loading (L). Wrapping (W) and evaluation (E)
are where Lya transforms the module boundary. Lya adds a wrap-
per function to pass an additional argument, the modified context
CTX. Lya for Node comes with a hard-coded list of variable names
available to the code of a module, such as require and Array;
the list contains about 150 entries and corresponds to the specific
versions of EcmaScript and Node. Identifying names coming from
EcmaScript was relatively easy, as the standard makes them explicit.
Node’s global names are described at various parts of the documen-
tation, but library-local names required close inspection of Node’s
internals; fortunately, they were only five names.

A challenge with Racket was its lack of facilities for intercepting
module loading (L). To address this, Lya provides its own custom
loader which allows it to modify the module’s source code early—
during the macro-expansion phase and prior to any evaluation.
During this phase Lya for Racket manipulates the code in AST
form, contrary to Lya for JavaScript that manipulates the code as a
string. Another challenge with Racket was its lack of support shad-
owing name bindings inside a module directly when the original
value is used. This is because a name is resolved to the name de-
fined in the local module rather than in the parent module, raising

Efficient Module-Level Dynamic Analysis for Dynamic Languages with Module Recontextualization ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

a “use before definition”. To address this, Lya generates names for
the original module in an intermediary module, and binds them to
their expected names in the original module. Additionally, if any
unused name is not (known to be) bound ahead of time, Racket
will complain—which precludes emitting eval forms to bind any
symbols or introduce any forms. Since the Racket compiler running
in phases and the resolution of require and macro expansion hap-
pen at two distinct phases, Lya shifts phases for the safe-require
macro to work, expanding to a module and require form.

We found it useful to add an option for explicitly including and
excluding libraries. The configuration object accepts only and not
expressions that indicate whether a module identifier will be part of
the analysis. These expressions contain sets of regular expressions,
pattern-matching against module identifiers (absolute file-system
paths). Originally intended as an aid to Lya’s development and
debugging, this option proved useful enough for writing the three
analyses that we decided to expose it to Lya’s users. Examples of its
use include excluding built-in libraries or including only the library
imported most recently.
Example Transformation Fragments: The code fragments be-
low exemplify Lya’s transformations in the context of JavaScript,
as applied to the simple-math library shown earlier (§2.1).

Lya traverses the math object, creating a new replacement object
whose functions are replaced with wrappers that call the corre-
sponding function of the original object interleaved with the hooks
corresponding to the specific analysis:

let _ = math; math = {};
math.mul = (...args) => {

let p = lya.hooks.prologue(args);
let v = _.mul(...args);
return lya.hooks.epilogue(p, v); }

// skipping code for div etc.

Lya next creates a modified version of the surrounding context, a
binding from names to modified values—i.e., objects transformed
according to the aforementioned wrapping transformation:

var ctx = {
// original, unmodified value:
print: lya.print,
// lya-transformed value:
import: lya.txf(import,

lya.hooks.prologue,
lya.hooks.epilogue),

// (...more values below, omitted...)
}

Lya binds this new context to the module being loaded using a
source-to-source transform that wraps the module in a closure that
redefines globally accessible identifiers as module-local ones:

function (cxt) {
var print = cxt.print;
var import = ctx.import;
// --start: original math module--
// (fragments omitted)
div: (a, b) => {
log.info.(b);
return a / b, }

// --end: original math module--
}

It finally interprets themodule closure, which returns an in-memory
Function object, and invokes the closure by passing the modified
context created above as an argument.

5 EVALUATION
Questions: We seek to answer the following three questions:

• Q1: How does Lya perform in detecting real problems occurring
in production environments?

• Q2: What is the runtime overhead of Lya, and how does it com-
pare with prior analysis frameworks?

• Q3: How large (LoC) are the analyses developed, and how does
it compare with prior analysis frameworks?

Summary: We use several different sets of benchmarks to answer
these questions. We develop the three analyses outlined in §2 and
apply them to both individual libraries and larger programs. The
analyses average 94 lines of code, and applied to the tests available
by the nominal developers incur runtime overheads of under 5%.We
also apply workloads identified from reports taken from GitHub
issues and CVE databases and confirm that Lya indeed detects
these problematic behaviors. Applying Lya and Jalangi on Jalangi’s
SunSpider benchmarks shows Lya averaging 87× lower overhead
than Jalangi.
Setup: Experiments were conducted on a modest server with 4GB
of memory and 2 Intel Core2 Duo E8600 CPUs clocked at 3.33GHz.
In terms of software, we used Docker version 18.09.7 running a
minimal Ubuntu 14.04.6, Jalangi v1, Node.js v8.9.4 (bundled with
V8 v6.1.534.50, LibUV v1.15.0, and npm v6.4.1), and Racket v.7.8—all
atop a Debian Linux with kernel v4.4.0-134. All times reported are
in ms, averaged over 1K runs; SA, PD, and TID respectively stand
for security analysis, performance diagnosis, and type invariant
discovery.

5.1 Analyses
We now report on the development of the several dynamic analyses,
including ones targeting the problems outlined in §2. Individual
analyses average 95.3 lines of code, but a significant part (about
20%) of this code is identical across them.
Security Analysis (111LoC): To address the security concerns
of third-party libraries, we developed a RWX policy that analyzes ac-
cesses for every library-to-library combination. The analysis treats
built-in libraries and global variables as modules, and develops a
permission model where individual fields are governed by permis-
sion sets containing combinations of R, W, and X permissions. At
the start of the analysis all permissions are set to ⊥ (i.e., default-
deny), and are gradually overwritten based on the accesses seen
by the analysis. Example accesses include: (i) reading a value, in-
cluding assigning it to a variable and passing it around to other
modules; (ii) modifying or deleting a value; and (iii) executing a
value—e.g., a function or a method—or invoking a constructor (usu-
ally prefixed by new). The resulting permission sets are organized
as collections of maps, one per library, indexed by object paths—e.g.,
require("Math").add: RX.

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Nikos Vasilakis, Grigoris Ntousakis, Veit Heller, and Martin C. Rinard

Table 1: Lya’s percent (%) overhead of its analyses applied over 30 popular libraries. On average, Lya’s analyses incur an overhead
of 4.14% , 3.62%, and 3.86% for the security analysis (SA), performance diagnosis (PD), and type invariant discovery (TID).

al
ge
br
a

ar
ra
y.
ch
un

k

ar
ra
y-
fir
st

ar
ra
y-
la
st

ar
ra
y-
ra
ng

e

ar
r-
di
ff

ar
r-
fla
tte

n

co
nc
at
-s
tr
ea
m

de
ep
-b
in
d

do
cu
m
en
t-
re
ad
y

fil
e-
si
ze

fs
-p
ro
m
is
e

ge
t-
va
lu
e

gr
ou

p-
ar
ra
y

ha
s-
ke
y-
de
ep

ha
s-
va
lu
e

he id
en
tit
y-
fu
nc
tio

n

in
-a
rr
ay

is
-e
m
pt
y-
ob
je
ct

is
-g
en
er
at
or

is
-n
um

be
r

is
-p
ro
m
is
e

is
-s
or
te
d

le
ft-
pa
d

m
is
si
ng

-d
ee
p-
ke
ys

no
de
-d
u

no
de
-s
lu
g

no
rm

al
iz
e-
pk

g

no
t-
de
fin

ed

SA 0.42 1.44 2.02 1.94 5.20 2.04 3.13 6.90 1.59 5.14 3.78 4.02 1.78 8.49 1.38 3.84 7.51 7.26 5.47 6.82 0.54 3.80 3.82 2.38 5.63 1.00 7.01 4.22 26.70 5.23
PD 0.23 0.42 1.93 1.41 5.61 2.13 2.19 6.31 1.87 4.75 2.24 2.60 1.05 6.94 1.79 2.75 5.78 7.63 4.90 6.01 0.71 3.41 2.91 1.12 5.71 0.62 6.36 3.24 19.86 4.88
TID 1.42 2.27 2.59 1.67 5.45 2.03 1.68 5.80 2.35 5.90 2.43 3.04 1.09 7.47 2.04 3.54 6.91 7.42 5.49 6.36 1.01 4.63 4.00 2.74 6.14 0.64 6.05 3.37 22.68 5.24

We apply Lya’s RWX analysis to safe-eval (v0.3), a module in-
tended as a sandboxed replacement to runtime code evaluation by
carefully sanitizing its input prior to calling eval. By executing
safe-eval’s test suite, we manually inspect the result and confirm
that the code did not escape the sandbox.

CVE reports from Snyk [2], a public vulnerability database,
indicate potential vulnerability and include a proof-of-concept
exploit (PoC). The PoC payload breaks out of the sandbox by
accessing process through the prototype chain, and then bind-
ing child_proceess to spawn a whoami. Using as a starting per-
mission set the one obtained from the tests, Lya’s RWX analysis
records and reports multiple invalid accesses—e.g., R access over
the prototype chain, X access over require, and R permission over
child_process.
PerformanceDiagnosis (87LoC): Wedeveloped a profiling anal-
ysis that operates at two levels: (i) module-boundary wrappers that
collect profiling statistics for calls between modules by wrapping
module interfaces; and (ii) an aggregator function that collects
statistics from all boundary wrappers and generates a model of
library load under the current workload. Boundary wrappers op-
erate at a higher-frequency intervals than the aggregator, which
operates on summaries. Their analysis focuses on function calls,
skipping all other direct field accesses. Functions are wrapped with
prologue and epilogue wrappers that record statistics from the
Node.js runtime—for now, a frequency counter and a timer between
prologue-to-epilogue invocations. Boundary wrappers summarize
these statistics by periodically sending a windowed, weighted aver-
age of call latencies to the aggregator function.

We apply Lya’s performance analysis to uri-js (v2.1.1), an exten-
sible URI parsing and validation module that is fast in the average
case. Issuing an HTTP load of 5Kreqs/s of uri-js’s test dataset,
uri-js responds with an average latency of 34.3ms (σ : 2.8ms);

Special pathological inputs, found on public Github issues [10],
can cause uri-js to spend upwards of 400ms per URI in pathologi-
cal edge cases. Servicing a workload with 99% benign URIs and 1%
pathological URIs, the throughput of the unmodified uri-js drops
to 197req/s (15.2s per request, σ : 11.04s). Lya’s analysis detects and
reports the load pressure applied on uri-js.
Type Invariant Discovery (86LoC): To infer type invariants
for serialization specifications, we based our analysis on a simple
type system modeled after the simply-typed lambda calculus aug-
mented with: (i) unions (sum types), such as string | number,

(ii) JavaScript-specific types such as null, NaN, or undefined, and
(iii) a native type for values that cannot be serialized, such as
console.log. Support for union types is useful for when our anal-
ysis witnesses variables holding values of different types—although,
in practice, programs tend to make calls of the same type across
their entire lifetime [12].

We apply Lya’s type invariant detection to the built-in JSON seri-
alization module. By polling from a fixed set of different invariants,
Lya can quickly detect whether a value is not likely to be processed
by the module intended for that value—in particular, here it ana-
lyzes whether a provided object structure contains cycles. While
objects in the test suite do not contain cycles, Lya detects multiple
anomalous instances where objects contain cycles and thus require
a different serialization-deserialization library.

5.2 Runtime Performance
To understand Lya’s runtime performance characteristics, we per-
formed three experiments. In the first experiment, we apply Lya on
30 popular libraries from npm and observe average overheads 3.6–
4.1%. In the second experiment, we compare Lya with Jalangi on
Jalangi’s workloads, and observe 1–3 orders of magnitude speedups
(average 87×).
Lya on Popular Libraries: For the first experiment, we evalu-
ate Lya on 30 JavaScript modules from the npm ecosystem. These
modules are from a curated list containing a list of “small, focused
Node.js modules” [31], which we sort by module popularity, and
pick the top 30: These modules average about 4.8M weekly down-
loads (total: 227M) and are depended upon by about 656 other
modules or applications on average (total: 30K).

Each library was run against the test suite provided by its nomi-
nal developers, via npm test. As these libraries are quite popular,
they have received significant investment in their testing infras-
tructure, resulting into two main characteristics relevant to Lya’s
evaluation: (i) different tests stress different parts of the library and
corresponding analysis primitives; (ii) even if most applications that
import these libraries use only a fraction of their functionality, tests
still cover the majority of provided functionality—e.g., we observed
test suites that were 10× the size of the corresponding library.

Tab. 1 shows the performance overhead of applying Lya to these
libraries as a percentage of the vanilla runtime. Overheads report on
running each library’s entire test suite under the three analyses and
comparing against the non-Lya version. For the security analysis,

Efficient Module-Level Dynamic Analysis for Dynamic Languages with Module Recontextualization ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

the average is 4.14% (max.: 26.7%; min.: 0.13%); for the performance
analysis, the average is 3.62% (max.: 19.86%; min.: 0.23%); and for
the type-invariant analysis, the average is 3.86% (max.: 22.68%; min.:
1.21%). To average across analyses, Lya incurs about 3.8% slowdown.

We zoom into the sources of these overheads in a later subsec-
tion (§5.3).
Lya vs. Jalangi: For the second experiment, we compare the per-
formance of Lya to that of Jalangi. Jalangi is a popular dynamic
analysis framework for JavaScript, providing fine-grained instru-
mentation by executing on a custom interpreter.

For this experiment, we use a different set of benchmarks—those
of Jalangi itself—as we were not able to run Jalangi on the 30 micro-
packages. This inability was because many of these 30 packages
make use of newer EcmaScript features; examples of such features
include arrow functions, template strings, destructuring, and en-
hanced object literals. Jalangi was further perplexed by npm test
(which is an external program outside Node, but tightly coupled
with it). Contrary to Jalangi, Lya allows the existence of recent
language features, demonstrating the compatibility benefits of oper-
ating on an unmodified runtime. Jalangi’s benchmark suite includes
26 programs from SunSpider [9], which we execute as part of a
Jalangi-provided docker container [15]. For these experiments, Lya
was also run in the same container.

In terms of analysis, both systems are configured to perform
dynamic frequency analysis of accesses to global variables. The
analysis is a common denominator between Lya and Jalangi, de-
signed and implemented from scratch to ensure a meaningful com-
parison between the two frameworks. Such analyses are useful
for understanding how program components interact with global
state—e.g., for generating remote-procedure stubs or scaling out
functional components [38].

The performance results show that Lya performs better than
Jalangi, at times by a significant margin: on average, Lya takes 87×
(max.: 266.3×, min.: 3.1×) longer to complete than Lya. There are
two reasons why Lya outperforms Jalangi, both of which related to
Lya’s main thesis. The first reason is that, to achieve its analyses,
Jalangi is implemented as a custom JavaScript interpreter written in
Python, which is less efficient than the native JavaScript implemen-
tation. Lya, on the other hand, operates on a completely unmodified
V8 engine, Google’s JavaScript runtime environment, taking advan-
tage of the environment’s just-in-time compiler, well-engineered
garbage collector, and other production-grade engineering invest-
ment. The second reason is that Lya operates at a significantly
coarser granularity, selectively wrapping data values needed by
the analysis, whereas Jalangi instruments every sub-expression—
including language-level constructs such as if, while, break, + etc.
For these two reasons, Jalangi interprets the entire program using its
own custom interpreter and hooks, whereas Lya adds only a small
overhead on only the dataflows being analyzed. These differences
show that language-based recontextualization transformations à la
Lya can deliver non-trivial performance improvements.

5.3 Further Micro-benchmarks
This subsection presents a series of micro-benchmarks that zoom
further into Lya’s sources of overheads. The key results are that
(i) the majority of the overhead comes from the JavaScript’s with

Table 2: Synthetic Micro-benchmarks.Applying the three analyses on
a series of synthetic micro-benchmarks, created to stress different features.
All timings are inms (Cf.§5.3).

Base SA PD TID

global vars 0.90 4.70 4.54 4.30
built-in fields 1.44 6.46 6.24 5.96
counter 3.37 6.26 6.32 5.72
all names 7.79 13.54 13.31 12.8
custom delays 24661 24848 24754 24760
direct-access 4.06 7.24 7.16 6.79
simple-types 4.11 7.25 7.23 6.86
cycles 4.32 8.32 8.19 7.73

construct, only used for a small fraction of Lya’s transformations—
only to global variables; (ii) interposition overhead is negligible in
practice; (iii) while wrapped and accessed fields increase exponen-
tially as a function of depth (as objects have many fields), object
explosion quickly plateaus around level four with under 400 fields;
and (iv) the majority of wrapped and accessed fields come from
Node and EcmaScript names rather than imports or global values.
Sources of Overhead: To understand the sources of these over-
heads, we perform a series of micro-benchmarks with tight loops
calling several ES-internal libraries without any I/O. By enabling dif-
ferent parts of Lya, we discover that the primary source of overhead
comes from JavaScript’s with construct: disabling with makes 95%
of the overheads disappear. The reason with dominates overheads
is twofold: it (i) interposes on too many accesses, only a fraction
of which are relevant, and (ii) remains significantly unoptimized,
since its use is strongly discouraged by the JavaScript standards.
Interposition Overheads: Table 2 depicts the results of the three
analyses applied to a subset of the aforementioned synthetic bench-
marks. The first column indicates the focus of the benchmark; not
all analysis–benchmark combinations are useful: for example, the
“custom-delay” benchmark features static bottlenecks across its
dependency tree but does not involve interesting access patterns.
Lya-induced slowdown is under 2×, except for the first two cases
that feature only accesses. Close inspection confirms a correlation to
the number of wrapped objects and the frequency of accesses: these
benchmarks feature artificially tight loops with high-frequency ac-
cesses. Transformation overheads themselves (not in Tab. 2) remain
under 1ms.

To understand the costs of proxy interposition, we measure the
time to access deeply-nested properties of two versions of an ob-
ject: unmodified and proxy-wrapped. Paths to the properties (e.g.,
a.b.c.. . .) are random but generated prior to running the experi-
ment. We construct 300MB-sized objects, each with a fanout of 8
fields nested for 12 levels. The proxy-wrapped version introduces
interposition at every level. Traversing one million 12-edge paths
(i.e., root to leaves) averages 167.2ms and 595.7ms (3.5×) for the un-
modified and proxy-wrapped versions, respectively. We emphasize
that this is an artificially constructed benchmark stressing worst-
case overheads nowhere near an normal execution: for comparison,
the transformation of these objects itself took nearly 16 seconds
(103× more than what we saw with real modules). The takeaway
is that Lya-inherent overheads due to interposition are unlikely to

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Nikos Vasilakis, Grigoris Ntousakis, Veit Heller, and Martin C. Rinard

O
bj

ec
ts

 (w
ra

pp
er

s)

0

100

200

300

400

0 1 2 3 4 5 6 7 8 9

algebra:

array.chunk:

array-last:

array-range:

arr-diff:

arr-flatten:

71 more

 V

al
id

 U
ni

qu
e

0

10

20

30

0 1 2 3 4 5 6 7 8 9

algebra:

array.chunk:

array-last:

array-range:

arr-diff:

arr-flatten:

71 more

To
ta

l V
al

id

0

1000

2000

3000

0 1 2 3 4 5 6 7 8 9

algebra:

array.chunk:

array-last:

array-range:

arr-diff:

arr-flatten:

71 more

Figure 3: Analysis characteristics as a function of the analy-
sis depth. From the top: (i) number of Lya wrappers applied, (ii)
number of unique accesses (i.e., counting each access once), (iii)
total number of accesses (Cf.§5.3).

be the bottleneck of an analysis; what is likely to be is the analysis
itself—e.g., updating a global aggregator or invoking system calls
to extract timing.
Analysis Depth: To understand the effect of depth in practice,
Figure 3 presents the number of wrapped object, unique accesses,
and total accesses as a function of depth for all 30 libraries (§5.2).
Depth is the distance from the root of each name path up to the
last accessible field and represents how deep Lya traverses refer-
ences starting starting from the names in scope—e.g., the access
global.obj.x is two levels deep and fs.readFile is one level
deep.

There are a few highlights worth noting. While the number of
objects wrapped by Lya starts growing rapidly, it quickly reaches
an average upper bound of 400 (depending on the exact benchmark).
Accesses grow exponentially for the first couple of levels—as objects
at levels have multiple fields, many of which are accessed several
thousand times—but then stabilize around level 5. This is because
most interfaces follow a mostly-flat format where all methods are
defined at the top level or right under.
Context: Context refers to the broad source of names that are
available in the current scope—ones defined by the EcmaScript
standard (es), through an explicit import (exports), by the Node.js
runtime (node), or via global variables (globs). A few names seem
globally available but are in fact module locals (require). User-
defined global variables are not prefixed with global thus requiring
special interposition (with).

Tab. 3 shows Lya’s context characteristics on all 30 libraries (§5.2).
In terms of the number of objects wrapped, the majority comes from
Node (91.1% of all wrappers). In terms of unique number of accesses,
for both invalid and invalid the majority comes from require;
taking their number into account, valid accesses concentrate on ES
and Node, whereas invalid ones concentrate on exports.

Table 3: Access characteristics as a function of context. Rows:
(1) number of Lya wrappers, (2) unique valid accesses (i.e., counting
each access once), (3) total valid accesses (Cf.§5.3).

es require exports node globs with

Object Wrappers 215 610 853 24260 531 158
Unique Valid Accesses: 52 611 108 273 54 0
Total Valid Accesses: 52 1556 110 13982 52 0

6 DISCUSSION, LIMITATIONS, & THREATS
TO VALIDITY

This sections discusses several aspects related to the design, imple-
mentation, and evaluation of module recontextualization.
Runtime Environment Modifications: A key benefit of the
analysis approach presented in this paper is that there is no need
to modify the runtime environment. This leads to important per-
formance and compatibility benefits discussed in the evaluation
section, but in principle can also lead to significant usability ben-
efits: developers do not need to setup and use a modified version
of the runtime system different and possibly divergent from the
version of the runtime system they normally use.
Security Implications: On the surface, the changes to the mod-
ule system,e.g., in JavaScript or Racket, of the analysis approach pre-
sented in this paper might seem as affecting the security properties
of the overall framework—including the inference and enforcement
of specific security policies expressed in Lya. In principle, however,
these security implications are no different from the ones of apply-
ing these changes in the underlying runtime environment itself. On
the contrary, applying these changes to the lower-level, memory-
unsafe, and type-unsafe language of the runtime environment im-
plementation itself—i.e., C/C++ for V8—would result in a higher risk
of insecurity. We also note that different security-related analyses
and instrumentations are developed in response to different threat
models; thus, understanding whether a modification—irrespective
of the level applied, i.e., that of the module system or the runtime
environment—is secure with respect to a particular threat model
would not be conclusive without considering the specific analysis
or policy at hand.
Other analyses: Module recontextualization is well-suited for
analyses on field-granularity read/write access and/or function-
granularity control flows, and especially ones that might be needed
in customer-facing production environments (not testing) such as
runtime subversion, denial-of-service detection, and coarse-grained
taint tracking. It is not well-suited for analyses that operate at
the granularity of language-level constructs such as if, while,
break, + etc.—but could be used even then to narrow down the
search before applying more heavyweight analyses. We note that
Lya’s analysis hooks allow for Turing-complete code, including
access to state not visible to the code being analyzed but shared
among all hooks comprising an analysis. This allows analysis code
to implement powerful security or performance monitors beyond
the ones presented in the current paper.
Semantic preservation: Analyses that focus on measurement
preserve the semantics of the original application, because Lya’s

Efficient Module-Level Dynamic Analysis for Dynamic Languages with Module Recontextualization ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

transformations do not interfere with the runtime execution of
the transformed values: wrappers simply forward calls to internal
functions, observing but not altering the call arguments. However,
when the intention of the instrumentation is to alter the behavior
of the program, wrappers interpose to introduce corrective behav-
iors not present in the original program: a typical example is the
enforcement of security policies e.g., monitoring access to sensitive
values and intervening to block unauthorized accesses.
Language-specific hooks: One limitation of language-specific
module recontextualization is that it requires developers towrite the
same analysis in as many languages as the applications they want
to analyze. We note that conventional analysis frameworks, such as
Jalangi, may have this property too; each of these frameworks—Lya
included—could expose a DSL for writing analysis-specific code
in a language-agnostic fashion. However, language-specific hooks
have several significant benefits: they (1) preserve developer knowl-
edge, expertise, libraries, and code; and (2) leverage the semantic
correspondence between the code implementing the analysis and
code being analyzed—for example, cooperative vs. preemptive con-
currency, prototype-based vs. class-based inheritance etc.
Top-level Scripts: A limitation of the Lya implementation is its
inability to analyze the library importing Lya—usually, the top-
level program entry point equivalent to main. This is because Lya
cannot transform the context of the top-level script, because the
context has already been loaded and bound to the interpreted code
(and which has also been interpreted). As a result, Lya as-is cannot
be applied to analyze single-file programs—a pattern that is not
unusual in scripting languages, often used for quick-and-dirty tasks.
The simplest workaround we have found is to create an auxiliary
file that (1) imports Lya, and then (2) imports (and invokes, if that
is not achieved by the import) the single-file script.
Outperforming Lya: The likelihood of fine-grained analysis
frameworks such as Jalangi outperforming coarse-grained anal-
ysis frameworks such as Lya, especially on more complex analyses,
is a possible threat to the validity of the results. Based on (i) our
understanding of the techniques involved, and (ii) the data accumu-
lated through extensive use of Lya and Jalangi, we do not foresee a
situation in which this would occur—especially in more complex
analyses. Jalangi sits at a different design point than Lya: it operates
on a custom Python runtime and at a very fine granularity—both
of which result in order-of-magnitude differences in overhead on
real analyses.

7 RELATEDWORK
Aspect-oriented programming (AOP) is a programming model in
which program points (or more generally queries against the pro-
gram trace) map to actions taken at these points [17]. Aspects are
typically implemented via explicit language extensions (e.g. AspectJ
and AspectC++) and/or via modifications to the original language
implementation or runtime system. Lya, in contrast, leverages the
existing dynamic loading and metaprogramming capabilities in
modern dynamic languages to operate completely within unmodi-
fied production language runtimes.

There are several dynamic analysis frameworks for JavaScript [5,
16, 33, 36]. These systems allow much more fine-grained analyses,
including tracking language-level constructs such as if, while,

break, + etc. Their goal is thus different from Lya’s, which focuses
on coarser but online analysis and enforcement.

NodeProf [36] is a fine-grained dynamic analysis that uses AST
instrumentation to insert analyses. While it supports finer-grained
analysis than Lya, it works with the underlying Graal [41] and Truf-
fle [42] APIs. Graal is compliant with, but different from, Node.js,
and thus NodeProf does not target unmodified Node.js. runtimes.

Dynamic instrumentation frameworks [8, 13, 22, 24, 26] wrap
basic blocks of a program incrementally and right before execution,
similar in vein to how Lya wraps libraries. They operate at a much
lower level (binary) than Lya, are much more detailed and heavy-
weight, and are usually not available to high-level languages as a
language-aware library.

JavaScript is related to WebAssembly, a standardized subset of
JavaScript target designed to serve as a compilation target. The first
dynamic analysis framework for WebAssembly, Wasabi [19], shares
some of Lya’ goals—e.g., low-effort analysis and API for observation
rather than manipulation. Contrary to Lya, Wasabi instruments
binaries statically, i.e., ahead-of-time, and aims for heavier-weight
higher-resolution instrumentation.

Lya draws inspiration from data-oriented JavaScript analysis
and query systems for the web [25, 27, 28]. Contrary to them, Lya
applies source-to-source transformations to add custom modified
contexts for production analysis and instrumentation.

Lya is related to program fracture and recombination (PFR) [1,
34], a line of work less tied to program analysis and more towards
program synthesis and automated patch generation. PFR breaks
up multiple programs into many components with the goal of
exchanging functionality between donor-donee pairs of programs.
Contrary to PFR, Lya operates on single programs, avoids breaking
semantics, and leverages the existence of components with (mostly)
explicit boundaries in the guise of modules.

8 CONCLUSION
This paper presentedmodule recontextualization, an efficientmodule-
level dynamic analysis technique, and Lya, an implementation for
JavaScript and Racket. Lya decomposes, transforms, and reassem-
bles programs by combining techniques for name shadowing, con-
text re-binding, and load-time transformation of the underlying
dependency graph. It delivers order-of-magnitude performance im-
provements over state-of-the-art dynamic analysis systems while
supporting a range of useful analyses, each implemented in about
100 lines of code. Lya is available—for installation and experimen-
tation with other applications and analyses—as open source:

https://github.com/andromeda/lya

ACKNOWLEDGMENTS
We thank Sage Gerard, Sotiris Ioannidis, Konstantinos Kallas, Ben Karel, Michail G.
Lagoudakis, Mary McDavitt, Jeff Perkins, and MIT CSAIL’s PAC group. The term
“recontextualization” was used by Ania Vu in a musical context, then recontextualized
by the first author. Much of Lya’s design was informed by interactions with the broader
community. We are particularly thankful to Isaac Z. Schlueter and CJ Silverio from
npm and Petros Efstathopoulos, Daniel Katz, Daniel Marino, and Kevin Roundy from
Symantec/NortonLifeLock Research Group. This work was partly supported by DARPA
contract no. HR00112020013, HR001120C0191, and HR001120C0155.

https://github.com/andromeda/lya

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Nikos Vasilakis, Grigoris Ntousakis, Veit Heller, and Martin C. Rinard

REFERENCES
[1] Peter Amidon, Eli Davis, Stelios Sidiroglou-Douskos, and Martin Rinard. 2015.

Program fracture and recombination for efficient automatic code reuse. In 2015
IEEE High Performance Extreme Computing Conference (HPEC). IEEE, 1–6.

[2] Anirudh Anand. 2020. Sandbox Escape: Safe Eval. https://snyk.io/vuln/SNYK-JS-
SAFEEVAL-608076

[3] Esben Andreasen, Liang Gong, Anders Møller, Michael Pradel, Marija Selakovic,
Koushik Sen, and Cristian-Alexandru Staicu. 2017. A survey of dynamic analysis
and test generation for JavaScript. ACM Computing Surveys (CSUR) 50, 5 (2017).

[4] José P. Cambronero, Thurston H. Y. Dang, Nikos Vasilakis, Jiasi Shen, Jerry
Wu, and Martin C. Rinard. 2019. Active Learning for Software Engineering. In
Proceedings of the 2019 ACM SIGPLAN International Symposium on New Ideas,
New Paradigms, and Reflections on Programming and Software (Athens, Greece)
(Onward! 2019). Association for Computing Machinery, New York, NY, USA,
62–78. https://doi.org/10.1145/3359591.3359732

[5] Laurent Christophe, Coen De Roover, and Wolfgang De Meuter. 2015. Poster:
Dynamic Analysis Using JavaScript Proxies. In Proceedings of the 37th Interna-
tional Conference on Software Engineering - Volume 2 (Florence, Italy) (ICSE ’15).
IEEE Press, Piscataway, NJ, USA, 813–814. http://dl.acm.org/citation.cfm?id=
2819009.2819180

[6] Scott A. Crosby and Dan S. Wallach. 2003. Denial of Service via Algorithmic
Complexity Attacks. In Proceedings of the 12th Conference on USENIX Security
Symposium - Volume 12 (Washington, DC) (SSYM’03). USENIX Association, USA.

[7] James C. Davis, Eric R. Williamson, and Dongyoon Lee. 2018. A Sense of Time
for JavaScript and Node.Js: First-Class Timeouts as a Cure for Event Handler
Poisoning. In Proceedings of the 27th USENIX Conference on Security Symposium
(Baltimore, MD, USA) (SEC’18). USENIX Association, USA, 343–359.

[8] Henri Maxime Demoulin, Isaac Pedisich, Nikos Vasilakis, Vincent Liu, Boon Thau
Loo, and Linh Thi Xuan Phan. 2019. Detecting Asymmetric Application-layer
Denial-of-Service Attacks In-Flight with FineLame. In 2019 USENIX Annual Tech-
nical Conference (USENIX ATC 19). USENIX Association, Renton, WA, 693–708.
https://www.usenix.org/conference/atc19/presentation/demoulin

[9] Webkit Developers. 2020. SunSpider 1.0.2 JavaScript Benchmark. https://webkit.
org/perf/sunspider/sunspider.html

[10] Peter Dotchev. 2016. Parse hangs on some long urls. https://github.com/garycourt/
uri-js/issues/12

[11] Ayrton Sparling et al. 2018. Event-Stream, GitHub Issue 116: I don’t know what to
say. https://github.com/dominictarr/event-stream/issues/116

[12] Michael D. Ernst, Jeff H. Perkins, Philip J. Guo, Stephen McCamant, Carlos
Pacheco, Matthew S. Tschantz, and Chen Xiao. 2007. The Daikon System for
Dynamic Detection of Likely Invariants. Sci. Comput. Program. 69, 1–3 (Dec.
2007), 35–45. https://doi.org/10.1016/j.scico.2007.01.015

[13] Cormac Flanagan and Stephen N. Freund. 2010. The RoadRunner Dynamic
Analysis Framework for Concurrent Programs. In Proceedings of the 9th ACM
SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools and En-
gineering (Toronto, Ontario, Canada) (PASTE ’10). Association for Computing
Machinery, New York, NY, USA, 1–8. https://doi.org/10.1145/1806672.1806674

[14] Michael Greenberg, Konstantinos Kallas, and Nikos Vasilakis. 2021. Unix Shell
Programming: The Next 50 Years. In Proceedings of the Workshop on Hot Topics
in Operating Systems (HotOS ’21). Association for Computing Machinery, New
York, NY, USA, 104–111. https://doi.org/10.1145/3458336.3465294

[15] Hrishikesh. 2018. Dockerhub: Jalangi Docker Container. https://hub.docker.com/
r/hrishikeshrt/jalangi

[16] Matthias Keil and Peter Thiemann. 2013. Efficient Dynamic Access Analysis Using
JavaScript Proxies. In Proceedings of the 9th Symposium on Dynamic Languages
(Indianapolis, Indiana, USA) (DLS ’13). ACM, New York, NY, USA, 49–60. https:
//doi.org/10.1145/2508168.2508176

[17] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Lopes,
Jean-Marc Loingtier, and John Irwin. 1997. Aspect-oriented programming. In
European conference on object-oriented programming. Springer, 220–242.

[18] Tobias Lauinger, Abdelberi Chaabane, Sajjad Arshad, William Robertson, Christo
Wilson, and Engin Kirda. 2017. Thou Shalt Not Depend on Me: Analysing the
Use of Outdated JavaScript Libraries on the Web. (2017).

[19] Daniel Lehmann and Michael Pradel. 2019. Wasabi: A Framework for Dynami-
cally Analyzing WebAssembly. In Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and Operating
Systems (Providence, RI, USA) (ASPLOS ’19). Association for Computing Machin-
ery, New York, NY, USA, 1045–1058. https://doi.org/10.1145/3297858.3304068

[20] SS Jeremy Long. 2015. OWASP Dependency Check. (2015).
[21] Snyk Ltd. 2018. minimatch@2.0.10. https://snyk.io/test/npm/minimatch/2.0.10
[22] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff

Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. 2005. Pin:
Building Customized Program Analysis Tools with Dynamic Instrumentation.
In Proceedings of the 2005 ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI ’05). Association for Computing Machinery,
New York, NY, USA, 190–200. https://doi.org/10.1145/1065010.1065034

[23] Michael Maass. 2016. A Theory and Tools for Applying Sandboxes Effectively. Ph.D.
Dissertation. Carnegie Mellon University.

[24] Lukáš Marek, Alex Villazón, Yudi Zheng, Danilo Ansaloni, Walter Binder, and
Zhengwei Qi. 2012. DiSL: A Domain-Specific Language for Bytecode Instrumenta-
tion. In Proceedings of the 11th Annual International Conference on Aspect-Oriented
Software Development (AOSD ’12). Association for Computing Machinery, New
York, NY, USA, 239–250. https://doi.org/10.1145/2162049.2162077

[25] James Mickens, Jeremy Elson, and Jon Howell. 2010. Mugshot: Deterministic
Capture and Replay for Javascript Applications. In Proceedings of the 7th USENIX
Conference on Networked Systems Design and Implementation (San Jose, California)
(NSDI’10). USENIX Association, USA, 11.

[26] Nicholas Nethercote and Julian Seward. 2007. Valgrind: A Framework for Heavy-
weight Dynamic Binary Instrumentation. SIGPLAN Not. 42, 6 (June 2007), 89–100.
https://doi.org/10.1145/1273442.1250746

[27] Ravi Netravali, Ameesh Goyal, James Mickens, and Hari Balakrishnan. 2016. Po-
laris: Faster page loads using fine-grained dependency tracking. In 13th {USENIX}
Symposium on Networked Systems Design and Implementation ({NSDI} 16).

[28] Ravi Netravali and James Mickens. 2019. Reverb: Speculative Debugging for Web
Applications. In Proceedings of the ACM Symposium on Cloud Computing.

[29] Flemming Nielson, Hanne R. Nielson, and Chris Hankin. 2010. Principles of
Program Analysis. Springer Publishing Company, Incorporated.

[30] npm, Inc. 2018. Details about the event-stream incident. https://blog.npmjs.org/
post/180565383195/details-about-the-event-stream-incident

[31] Andrea Parodi. 2020. Awesome Micro npm Packages. https://github.com/parro-
it/awesome-micro-npm-packages

[32] Niels Provos. 2003. Improving Host Security with System Call Policies. In Pro-
ceedings of the 12th Conference on USENIX Security Symposium - Volume 12 (Wash-
ington, DC) (SSYM’03). USENIX Association, USA, 18.

[33] Koushik Sen, Swaroop Kalasapur, Tasneem Brutch, and Simon Gibbs. 2013.
Jalangi: A Selective Record-replay and Dynamic Analysis Framework for
JavaScript. In Proceedings of the 2013 9th Joint Meeting on Foundations of Software
Engineering (Saint Petersburg, Russia) (ESEC/FSE 2013). ACM, New York, NY,
USA, 488–498. https://doi.org/10.1145/2491411.2491447

[34] Stelios Sidiroglou-Douskos, Eric Lahtinen, Fan Long, and Martin Rinard. 2015.
Automatic Error Elimination by Horizontal Code Transfer across Multiple Appli-
cations. SIGPLAN Not. 50, 6 (June 2015), 43–54. https://doi.org/10.1145/2813885.
2737988

[35] Snyk. 2016. Find, fix and monitor for known vulnerabilities in Node.js and Ruby
packages. https://snyk.io/

[36] Haiyang Sun, Daniele Bonetta, Christian Humer, and Walter Binder. 2018. Ef-
ficient Dynamic Analysis for Node.Js. In Proceedings of the 27th International
Conference on Compiler Construction (Vienna, Austria) (CC 2018). ACM, New
York, NY, USA, 196–206. https://doi.org/10.1145/3178372.3179527

[37] The gRPC Authors. 2018. gRPC. https://grpc.io/ Accessed: 2019-04-16.
[38] Nikos Vasilakis, Ben Karel, Yash Palkhiwala, John Sonchack, André DeHon, and

Jonathan M. Smith. 2019. Ignis: Scaling Distribution-Oblivious Systems with
Light-Touch Distribution. In Proceedings of the 40th ACM SIGPLAN Conference on
Programming Language Design and Implementation (Phoenix, AZ, USA) (PLDI
2019). Association for Computing Machinery, New York, NY, USA, 1010–1026.
https://doi.org/10.1145/3314221.3314586

[39] Nikos Vasilakis, Ben Karel, Nick Roessler, Nathan Dautenhahn, André DeHon,
and Jonathan M. Smith. 2018. BreakApp: Automated, Flexible Application Com-
partmentalization. In Networked and Distributed Systems Security (San Diego,
California) (NDSS’18). https://doi.org/10.14722/ndss.2018.23131

[40] Nikos Vasilakis, Cristian-Alexandru Staicu, Grigoris Ntousakis, Konstantinos
Kallas, Ben Karel, André DeHon, and Michael Pradel. 2021. Preventing Dynamic
Library Compromise on Node.js via RWX-Based Privilege Reduction. In Pro-
ceedings of the 2021 ACM SIGSAC Conference on Computer and Communications
Security (Seoul, South Korea) (CCS ’21). Association for Computing Machinery,
New York, NY, USA.

[41] Thomas Würthinger, Christian Wimmer, Christian Humer, Andreas Wöunde-
fined, Lukas Stadler, Chris Seaton, Gilles Duboscq, Doug Simon, and Matthias
Grimmer. 2017. Practical Partial Evaluation for High-Performance Dynamic
Language Runtimes. SIGPLAN Not. 52, 6 (June 2017), 662–676. https://doi.org/
10.1145/3140587.3062381

[42] Thomas Würthinger, Christian Wimmer, Andreas Wöundefined, Lukas Stadler,
Gilles Duboscq, Christian Humer, Gregor Richards, Doug Simon, and Mario Wol-
czko. 2013. One VM to Rule ThemAll. In Proceedings of the 2013 ACM International
Symposium on New Ideas, New Paradigms, and Reflections on Programming & Soft-
ware (Indianapolis, Indiana, USA) (Onward! 2013). Association for Computing Ma-
chinery, New York, NY, USA, 187–204. https://doi.org/10.1145/2509578.2509581

[43] Serdar Yegulalp. 2016. How one yanked JavaScript package wreaked
havoc. http://www.infoworld.com/article/3047177/javascript/how-one-yanked-
javascript-package-wreaked-havoc.html

[44] Markus Zimmermann, Cristian-Alexandru Staicu, CamTenny, andMichael Pradel.
2019. Smallworld with High Risks: A Study of Security Threats in the Npm
Ecosystem. In Proceedings of the 28th USENIX Conference on Security Symposium
(Santa Clara, CA, USA) (SEC’19). USENIX Association, USA, 995–1010.

https://snyk.io/vuln/SNYK-JS-SAFEEVAL-608076
https://snyk.io/vuln/SNYK-JS-SAFEEVAL-608076
https://doi.org/10.1145/3359591.3359732
http://dl.acm.org/citation.cfm?id=2819009.2819180
http://dl.acm.org/citation.cfm?id=2819009.2819180
https://www.usenix.org/conference/atc19/presentation/demoulin
https://webkit.org/perf/sunspider/sunspider.html
https://webkit.org/perf/sunspider/sunspider.html
https://github.com/garycourt/uri-js/issues/12
https://github.com/garycourt/uri-js/issues/12
https://github.com/dominictarr/event-stream/issues/116
https://doi.org/10.1016/j.scico.2007.01.015
https://doi.org/10.1145/1806672.1806674
https://doi.org/10.1145/3458336.3465294
https://hub.docker.com/r/hrishikeshrt/jalangi
https://hub.docker.com/r/hrishikeshrt/jalangi
https://doi.org/10.1145/2508168.2508176
https://doi.org/10.1145/2508168.2508176
https://doi.org/10.1145/3297858.3304068
https://snyk.io/test/npm/minimatch/2.0.10
https://doi.org/10.1145/1065010.1065034
https://doi.org/10.1145/2162049.2162077
https://doi.org/10.1145/1273442.1250746
https://blog.npmjs.org/post/180565383195/details-about-the-event-stream-incident
https://blog.npmjs.org/post/180565383195/details-about-the-event-stream-incident
https://github.com/parro-it/awesome-micro-npm-packages
https://github.com/parro-it/awesome-micro-npm-packages
https://doi.org/10.1145/2491411.2491447
https://doi.org/10.1145/2813885.2737988
https://doi.org/10.1145/2813885.2737988
https://snyk.io/
https://doi.org/10.1145/3178372.3179527
https://grpc.io/
https://doi.org/10.1145/3314221.3314586
https://doi.org/10.14722/ndss.2018.23131
https://doi.org/10.1145/3140587.3062381
https://doi.org/10.1145/3140587.3062381
https://doi.org/10.1145/2509578.2509581
http://www.infoworld.com/article/3047177/javascript/how-one-yanked-javascript-package-wreaked-havoc.html
http://www.infoworld.com/article/3047177/javascript/how-one-yanked-javascript-package-wreaked-havoc.html

	Abstract
	1 Introduction
	2 Background, Examples, and Scope
	2.1 Module Systems
	2.2 Dynamic Analysis Examples
	2.3 Scope

	3 Module recontextualization
	3.1 Overview
	3.2 Decomposition
	3.3 Recontextualization
	3.4 Reassembly

	4 Two Implementations
	5 Evaluation
	5.1 Analyses
	5.2 Runtime Performance
	5.3 Further Micro-benchmarks

	6 Discussion, Limitations, & Threats to Validity
	7 Related Work
	8 Conclusion
	Acknowledgments
	References

