
Ignis: Scaling Distribution-Oblivious Systems with

Light-Touch Distribution

Nikos Vasilakis
University of Pennsylvania, USA

nikos@vasilak.is

Ben Karel
University of Pennsylvania, USA

karel@seas.upenn.edu

Yash Palkhiwala
University of Pennsylvania, USA

yashp@seas.upenn.edu

John Sonchack
University of Pennsylvania, USA

jsonch@seas.upenn.edu

André DeHon
University of Pennsylvania, USA

andre@acm.org

Jonathan M. Smith
University of Pennsylvania, USA

jms@cis.upenn.edu

Abstract

Distributed systems offer notable benefits over their cen-
tralized counterparts. Reaping these benefits, however, re-
quires burdensome developer effort to identify and rewrite
bottlenecked components. Light-touch distribution is a new
approach that converts a legacy system into a distributed
one using automated transformations. Transformations op-
erate at the boundaries of bottlenecked modules and are
parametrizable by light distribution recipes that guide the
intended semantics of the resulting distribution. Transfor-
mations and recipes operate at runtime, adapting to load by
scaling out only saturated components. Our Ignis prototype
shows substantial speedups, attractive elasticity character-
istics, and memory gains over full replication, achieved by
small and backward-compatible code changes.

CCS Concepts • Computer systems organization →
Distributed architectures; Cloud computing; • Software

and its engineering → Extra-functional properties; Soft-
ware as a service orchestration system.

Keywords Distribution, Profiling, Load detection, Transfor-
mations, Scale-out, Scalability, Parallelism, Decomposition
ACM Reference Format:

Nikos Vasilakis, Ben Karel, Yash Palkhiwala, John Sonchack, André
DeHon, and Jonathan M. Smith. 2019. Ignis: Scaling Distribution-
Oblivious Systems with Light-Touch Distribution. In Proceedings
of the 40th ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI ’19), June 22–26, 2019, Phoenix,
AZ, USA. ACM, New York, NY, USA, 17 pages. https://doi.org/10.
1145/3314221.3314586

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-6712-7/19/06.
https://doi.org/10.1145/3314221.3314586

Package 1

D
ev

el
op

m
en

t

Pkg2 Ru
nt

im
eRecipe

{5x} Recipes
max:10x..Pkg1

Pkg4

1 2
3

 IGNIS DISTR.
 APP

Transformations
 (profiling, RPC, ...)

 APP

Pkg5

Fig. 1. Schematic of light-touch distribution. Module structure is used
at runtime to automatically scale systems out, guided by recipes (Cf.§1).

1 Introduction

Distributed systems can speed up computations, mitigate
resource-exhaustion attacks, improve fault-tolerance, and
balance load during spikes. Yet, only aminority of developers,
employed by the select few companies that deal with massive
datasets, have the luxury of engineering software systems
with distribution baked in from the start. The remaining
majority starts by developing and deploying software in
a centralized manner—that is, until there is a significant
change of requirements, such as a load increase.
When this happens, developers try to identify affected

parts of the system and manually re-write them to exploit
distribution. The scope of such rewrites, and therefore the
cost of manual effort, can vary considerably. Often, they only
focus on a few parts of the system—for example, upgrading
to a distributed storage layer. More rarely, companies rewrite
entire systems (e.g., Twitter’s Ruby-to-Scala rewrite [55]),
a process that is notoriously difficult under schedule con-
straints and competitive pressures [80, 93]. The manual ef-
fort is expensive, and can introduce new bugs, cascading
changes, or regressions of previously fixed performance is-
sues, especially since software today makes extensive use of
third-party modules [85]. Could the process of identifying
bottlenecks, generating a distributed version of the system,
and scaling it out at runtime be significantly automated?

The core insight behind this work is that, instead of man-
ually building scalability into the system, valuable human
effort should only be spent on instructing the system how to
scale. As long as developers have sprinkled the programwith
hints, it should automatically detect and dynamically adapt to
load. We term this automation and associated control-plane
hints light-touch distribution (Fig. 1).

1010

https://doi.org/10.1145/3314221.3314586
https://doi.org/10.1145/3314221.3314586
https://doi.org/10.1145/3314221.3314586

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA N. Vasilakis, B. Karel, Y. Palkhiwala, J. Sonchack, A. DeHon, and J. M. Smith

Built-in modules
Third-party modules
Project-local modules

Wiki

Routing

Edit

Search

Account

Markup

FS

Match

Crypto

Wiki

Routing

Edit

Search

Account

Markup

FS

Match

Crypto

Wiki

Routing

Edit

Search

Account

Markup

FS

Match

CryptoIgnis Ignis

(a) (b) (c)

Fig. 2. Case study. Wiki module relationships (a) monitored continuously at runtime to identify bottlenecks (b) and automatically scale them out (c) (Cf.§3).

Light-touch distribution involves two components: (i) au-
tomated programmatic transformations that operate at mod-
ule boundaries for detecting and adapting to load; and (ii)
distribution recipes, lightweight annotations that guide the
semantics of the resulting distributed application. Transfor-
mations automate most of the process, but depend on recipes
for key semantic decisions that affect soundness. Both trans-
formations and recipes operate at runtime, which offers sig-
nificant benefits: applications can respond dynamically to
increased load by scaling out, can selectively replicate sat-
urated components instead of whole applications, and can
avoid over-provisioning by scaling back when load subsides.

Light-touch distribution occupies a known middle-ground
[10, 54, 86] between flexibility and automation (§9), and is en-
abled today by a confluence of trends in software development—
namely, the increasingly pervasive use of (i) dynamic, in-
terpreted languages, (ii) fine-grained modules with clear
boundaries, and (iii) cooperatively concurrent, continuation-
passing programming styles (CPS). Examples of such envi-
ronments include JavaScript, Julia, and Lua; our Ignis proto-
type targets server-side JavaScript (§7).
We begin with an example of applying light-touch dis-

tribution (§2), and continue with an overview of Ignis (§3).
Sections 4–6 highlight our key contributions:
• §4 introduces load-detection transformations that collect
windowed statistics about load at each module boundary.
Control-plane coordination with a global view of load and
available resources helps decide when to initiate scale-out
of a bottlenecked module.

• §5 presents a set of parametrizable distribution transforma-
tions that transparently scale modules out. These transfor-
mations can create module replicas, hook communication
channels among them, schedule requests, and forward
side-effects such as mutation and collection of memory.

• §6 outlines distribution recipes, lightweight annotations
that guide the semantics of the resulting distribution. They
offer significant flexibility by parametrizing transforma-
tions, including tuning state management, replication con-
sistency, event propagation, and colocation preferences.

We then outline Ignis’ implementation (§7), evaluate it using
a combination of micro-benchmarks and real systems (§8),
discusses related prior work (§9), and close with possible
future directions (§10).

2 Background and Motivation

We use a wiki engine to illustrate difficulties in scaling out
applications (§2.1), outline light-touch distribution (§2.2),
apply Ignis to alleviate the aforementioned difficulties (§2.3),
and outline the trends that enable this approach today (§2.4).

2.1 Case Study: A Wiki Engine

Fig. 2a shows the (simplified) module structure of a wiki
engine [29]. Modules—development-time constructs usu-
ally glued together without a full understanding of their
internals—are represented as vertices. The resulting depen-
dencies, which in modern applications can be thousands [85],
are depicted as edges connecting importing parent modules
with imported child modules.

A sharp increase in sign-in attempts can saturate the
accountmodule. Logically unrelated parts of the system com-
peting for the same resource (e.g., CPU), such as document
editing and searching, will also be affected.
Developers use various techniques to understand such

problems. For example, collected traces can be replayed
against off-line versions of the system and statistical profil-
ing can identify hot code-paths. These techniques, however,
require some degree of manual effort: capturing traces, set-
ting up testbeds, replaying traces, analyzing statistics, and
debugging performance are all tedious and time-consuming
tasks. Pervasiveness of third-party modules and heavy code
reuse in modern applications compound the challenge, as
the causes may lie deep in the dependency chain.

Detecting bottlenecks is not easy, but its effort is dwarfed
by that of rewriting parts of an application to exploit distri-
bution. Extensive code changes, orchestration of multiple
jobs, service discovery, and scheduling over multiple replicas
are all difficult and error-prone tasks, and must be repeated
for every new bottleneck.

Light-touch distribution attempts to automate as much of
this process as possible without requiring development in a
new programming language or model.

2.2 Light-touch Distribution with Ignis

Ignis detects and scales out bottlenecked components by
interposing on the application’s module boundaries. It is in-
troduced as a backward-compatible, drop-in replacement
of the language’s module system. It can be imported as
an application-specific module (e.g., ignis package) or can

1011

Ignis: Scaling Distribution-Oblivious Systems with Light-Touch Distribution PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

let pbkdf2 = require("crypto").pbkdf2; //module
let slt = users[usr].salt; // usr, pswd via form
let h = users[usr].hash.toString();
pbkdf2(pswd, slt, 10000, 512, (e, d) => {
 (h == d)? resp.send(200) : resp.send(401);
});

1
2
3
4
5
6

Fig. 3. Example bottleneck. pbkdf2 at the account–crypto boundary
makes the crypto module a good candidate for scale-out (Cf.§2.3).

be bundled with a custom language runtime (e.g., Ignis-
powered Lua) replacing its system-wide module system. It
starts by dynamically replacing the import function: instead
of simply locating and loading a module, the function yields
to Ignis, which applies a series of transformations tomodules
with the goal of interposing on their boundaries.

Transformations depend on several configuration details
related to recipes, but can be coarsely grouped into three
broad classes: (i) profiling and decision-making, (ii) spawning
and distribution, and (iii) single-system retrofitting. Profiling
transformations build a statistical model of module pressure
(Fig. 2b) and rank candidate modules. Distribution transfor-
mations replicate bottlenecked modules, create communi-
cation channels among them, and balance load across all
replicas (Fig. 2c). Single-system transformations selectively
back-port the semantics of a single runtime. To guide the
intended semantics (and associated trade-offs), developers
annotate transformations with optional distribution recipes.

2.3 Ignis-powered Wiki Engine

To show how to apply Ignis on the performance problem
outlined earlier (§2.1), Fig. 3 zooms into the authentication
section of the account module: it imports the built-in crypto

module (line 1) and invokes pbkdf2 (4) which, upon comple-
tion, calls a provided continuation function (5). Ignis aug-
ments require (1) to return a wrapper of pbkdf2. The wrap-
per monitors pbkdf2’s calls at the account–crypto boundary.
Upon load increase, it identifies pbkdf2 as a bottleneck and
marks crypto as a candidate for scale-out.
To scale out, Ignis launches a few fresh replicas of the

crypto module and starts spreading remote procedure calls
(RPCs) among them. RPCs require serializing arguments,
sending them to one of the remote replicas, and calling
pbkdf2 there. Results are sent back to the account module,
which passes them to the provided continuation.

Ignis also augments require to take a recipe as an addi-
tional, optional argument. A recipe σ at require("crypto",
σ) (1) would constrain pbkdf2’s scale-out. For example, a σ
equal to {order:true}would have forced ordering semantics
on calls and their results across all crypto replicas. Luckily,
pbkdf2 is a pure function, which can be determined even
in the complete absence of annotations. This exemplifies a
case where light-touch distribution can obtain benefits even
without any developer effort.

2.4 Simplifying Trends

Light-touch distribution is significantly simplified by the
increasingly pervasive use of certain features today.
Packages and Modules Modules provide an implicit and
fine-grained component architecture [26, 27, 35, 62] that
applications can be partitioned across [18, 37, 63, 74, 91].
They encapsulate state behind small and tight interfaces,
simplifying and minimizing transformations. Their bound-
aries clearly mark self-contained components that can be
configured to execute remotely—including built-ins, such as
crypto. Multi-thousand-module dependency graphs enable
profiling and decomposition at a very high resolution, aiding
bottleneck detection and memory consumption at scale.
Programming Styles Today’s popular programming styles
blur the line between local and remote execution. Cooper-
ative concurrency grants scheduling control to the execut-
ing code, event-driven programming is naturally message-
passing, and continuations enable (hidden) parallelism: inde-
pendent continuations do not impose ordering constraints—
two continuations λ1 and λ2 of sequenced calls f1(. . . , λ1);
f2(. . . , λ2) can be interleaved in any order (otherwise, f2
would have been included in λ1). As such, components can
be distributed across multiple nodes, even if there is no un-
derlying single system image [3, 5, 9, 13, 49, 52, 94].
Dynamic Language Interpretation Dynamic languages
have features—e.g., name (re-)binding, value introspection,
dynamic code evaluation, and access interposition—that en-
able runtime transformations [41, 42]. They conveniently
unify module identification with interposition: a single func-
tion or function-like operator locates a module, interprets it,
and applies transformations before exposing its interface in
the caller context. As a result, monitoring and distribution
can be performed at runtime and without forcing users into
specific programming models [20, 60, 61, 68, 92].

3 System Overview

This section presents an overview of Ignis (§3.1) and outlines
the structure of transformations (§3.2).

3.1 Transformations vs. Recipes

Ignis’ responsibilities are divided between transformations
and recipes, similar to the separation of mechanism and
policy in the operating systems literature [50]. Transforma-
tions provide the mere mechanism for automating profiling
and distribution, including creating remote references, copy-
ing structures, propagating events, etc. Semantics-related
concerns are offloaded to recipes—i.e., policies that encode
developer knowledge about the behavior of modules.
Distribution Recipes Developers start by annotating se-
lected imports with distribution recipes. Recipes are declara-
tive runtime configuration objects, expressed using a domain-
specific language embedded in the source language. They

1012

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA N. Vasilakis, B. Karel, Y. Palkhiwala, J. Sonchack, A. DeHon, and J. M. Smith

1 p ::= s ∈ Strinд | n ∈ Number | b ∈ Bool | ∅

2 v ::= p | (x ,. . .) => {e} | {s:v,. . .} | [v,. . .]

3 e ::= x | v | (x = e) e | e(e) | e[e] = e
Listing 1. Module interface language, used in transformations.Mod-
ules return non-primitive values v , manipulatable via expressions e .

declare the intended semantics of the resulting distribution,
tuning trade-offs that are fundamental in distributed sys-
tems [1, 30, 53]. For example, calls to a module may need to
maintain ordering and changes to a module’s state may need
to be reflected across its replicas.
Profiling Once provided with a few recipes, Ignis starts
monitoring the performance of the corresponding modules
in order to detect opportunities for distribution. A key ob-
servation is the semantic isomorphism between calling a
function and passing a message [48, 81]. This allows viewing
a series of calls as a stream of messages. Module boundaries
can be viewed as (virtual) queues of messages that await pro-
cessing. Overwhelming a module causes its ingress queue
to grow. At some point, the waiting time of newly-arrived
messages becomes longer than the time to send the messages
to a remote copy of the module, run the call there, and return
the results back to their intended recipient.
Scaling Out Once this point is reached, Ignis attempts
to scale out a module while selectively maintaining single-
runtime semantics. Scaling out is achieved by spawning a
module replica and replacing its local use with a thin client
that disperses calls across all replicas. On each call, argu-
ments are sent to a remote replica and results from the replica
are returned to the thin client. The selection of which single-
runtime semantics to maintain is tunable by distribution
recipes, and implemented via additional transformations:
converting local-memory pointers to meaningful distributed
ones, forwarding side-effects such as memory allocation and
collection, providing distributed versions of core built-in
libraries, and enforcing ordering (when required).

3.2 Structure of Transformations

Transformations are used pervasively throughout Ignis, and
are abstracted via a few parametrizable templates. Tem-
plates map different types of values (List. 1) to a generic
handler for each type. Transformations have these handlers
parametrized to achieve concrete goals such as monitor-
ing, serialization, and scale-out. Simplified instances are de-
scribed in the following two sections (§4–5).
Transformations can be applied to any value in the lan-

guage, such as an object returned from a module or an ex-
ception about to be sent across the network. The general
case of such a value is a directed acyclic graph (DAG). The
types of its vertices can be coarsely grouped into primitives,
functions, and objects. Objects map strings to other values,
pointing to other vertices in the DAG. Transformations start
by walking the DAG from the root vertex and processing
component values based on their types. They do not mutate

original values, but first copy them, apply transformations
to the copies, and return copies to the caller. They only par-
tially explore the object graph, as they do not peak through
function closure environments. Fortunately, this aligns well
with our goal of monitoring activity at module boundaries
and ignoring module-internal activity.
As an example, consider transforming the crypto mod-

ule (§2.3). Ignis traverses the object returned by crypto

and replaces functions such as pbkdf2 with wrappers whose
specifics depend on the intended goal: profiling wrappers
call the original function in between statistics collection, and
RPC wrappers forward the call to a remote replica.

4 Decision-Making

The task of monitoring performance and detecting opportu-
nities for scale-out is logically split into (i) a decentralized set
of profiling agents that operate at module boundaries (§4.1),
and (ii) a centralized coordinator that builds a holistic under-
standing of what—and when—to scale out (§4.2).

Profiling is accomplished by wrapping module interfaces
with logic that generates a model of the current workload.
Each module boundary collects its own statistics based on a
combination of recipes and instructions from the coordinator.
Profile generation can operate at a high resolution in time
and space: (i) at every function call entering a module, and
(ii) on thousands of modules across an application.

The coordinator oversees all profile-generation agents, col-
lects periodic summaries from them, and ranks their needs.
It is also responsible for creating a map of available resources
and checking their status and health. While coordination op-
erates at a lower resolution than profile generation, it allows
monitoring some boundaries more closely than others.
The division of labor in deciding when to initiate scale-

out is somewhat delicate. Agents running at the boundaries
should not depend on the coordinator for online decision-
making, as after a first scale-out they may be executing on
different nodes. As such, they should have enough logic
to make an online decision. To solve this, the coordinator
pushes periodic guideline updates to the agents, whichmerge
them with their local configurations (e.g., module-specific
recipes that override default/global recipes).

4.1 Profile Generation

Profiling transformations insert agents modeling queues at
the module boundaries. Observing queue metrics such as
arrival rate and wait time, agents build an understanding of
the pressure applied at their boundary.
Transformations Profiling transformations focus on func-
tion (and function-like) values (Fig. 4), for which they gener-
ate and attach code that monitors calls and returns. Specif-
ically, each vertex in the DAG returned from a module is
recursively replaced with a wrapper:

1013

Ignis: Scaling Distribution-Oblivious Systems with Light-Touch Distribution PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

ptf (e: DAG) : DAG := match e with
| Obj ((s, v) :: xs) -> Obj ((s, ptf v) :: ptf xs)
| Arr (v :: vs) -> Arr ((ptf v) :: ptf xs)
| Fun f -> Fun (args) => {nq(); f(args); dq();}
| __ -> toStats(e)
end

Fig. 4. Profiling transformation. Functions are wrapped with prologue
(nq) and epilogue (dq) operations that record statistics (Cf.§4.1).

• function values are wrapped in functions that add a pro-
logue/epilogue pair recording profiling data.

• mutable values have their getter and setter methods simi-
larly wrapped with prologue/epilogue wrappers.

• values of all other types are left unmodified.
Ignis now mediates between parent and child modules.

Wrappers record statistics about the their encapsulated func-
tions as well as queue characteristics of outstanding calls.

In the cases of non-blocking (i.e., asynchronous) interfaces,
the prologue includes code for wrapping the continuation
argument (i.e., callback function) before passing it to the
encapsulated callee; the continuation wrapper records meta-
data similar to the case of returns for blocking (i.e., synchro-
nous) interfaces. As function invocations may support re-
entrant concurrency (e.g., fsmodule), marks are added (§5.2)
to match prologues with their respective epilogues.
Statistics The wrapper epilogue has access to several raw
metrics related to profiling (Tab. 1). These metrics need to be
composed into a model that allows Ignis to decide whether
to scale out a module.
A simple idea would be to detect when the number of

concurrent requests ϱ exceed the number of replicasR. When
this happens, assuming R does not exceed the number of
CPUs P , Ignis could start a fresh new replica:

Rnew =

{
R + 1, ϱ > R ∧ R < P

R − 1, ϱ < R
(1)

This approach omits a few important issues. First, we
would like to model and account for the overheads of scaling
out. These overheads involve context switching, round-trip
times, and other systemic overheads δ , as well as one-off

Tab. 1. Example metrics. Module boundary agents see only (high-
frequency) local metrics; coordinators receive weighted summaries but
have end-to-end visibility across the system (Cf.§4.1).

Metric Module Agent Controller

Arrival Freq. Call Freq. Arrival Th/put
Queue Size Queued Items Avg. size
Processing Time Downstream Latency Lifetime
Call Type Func/Method/Prop. Access Call Ratios
Failure Ratio Exceptions Summary

CPU Number/Type Locally available Total
etc. etc. etc.

fc1

time

fc1fc2
time

time

fc1fc2proc3

fc1fc2

time
proc3

p

p

p

p e

ee

e

(a)

(c)

(b)

(d)

Fig. 5. Accounting accuracy. Only observing the prologue-to-epilogue
timings e − p for a function fc1 does not allow distinguishing among (a)
uninterrupted function call, (b) concurrent interleaving with another call, (c)
descheduled in favor of a different process, (d) parallel execution (Cf.§4.1).

startup costs δ0 when spawning a replica (§8). Second, as
some operations (e.g., slow I/O) are intrinsically concurrent,
we would want to allow for at least some concurrency before
paying the cost of scale-out. The available room for con-
currency, however, is not visible at the level of individual
boundaries; thus, agents can model a virtual queue by taking
a windowed, weighted average of wait-times li :

Rnew =

{
R + 1, ϱ ×

∑t
i=1wili > δ + δ0

R − 1, ϱ ×
∑t

i=1wili < δ + a ∗ δ0
(2)

Scale-in (i.e., −1) might not seem as important, but con-
strained environments benefit from quick re-allocation. How-
ever, after scale-in, the system often ends up just scaling out
the same module. To avoid such oscillation, a small recla-
mation delay a increases the system’s confidence that the
workload has moved away from a specific pattern.

Our prototype (§8) uses a combination of eq. (1) and eq. (2).
Eq. (1) is used for short-running processes where there are
not enough samples to feed the weighted average.
Challenges A few details on call styles, exception handling,
and the module cache are worth noting.

In the case of blocking interfaces, no items will be arriving
at the boundary before previous items finish executing. As
such, there is no meaningful notion of queues (i.e., queues
will always have zero items). Instead, Ignis wrappers calcu-
late windowed averages over individual past calls, without
modeling concurrently pending ones. If a blocking interface
is marked as a potential bottleneck, Ignis will suggest con-
version to a concurrent, non-blocking version as an interme-
diate step before distribution; runtime transformations (§5)
generate and link the new interface automatically.
In the case of non-blocking interfaces, functions will be

called as soon as items arrive. Gathering accurate statistics
for individual calls can be challenging, because OS-internal
queuing and reordering is not visible to the boundary wrap-
per. Specifically, a prologue–epilogue time interval can mean
any one of several scenarios (Fig. 5). Fortunately, as services
are deployed for some time prior to saturation, Ignis has the
benefit of collecting accurate long-term runtime statistics.
The problem is further alleviated by Ignis’s ability to dis-
tinguish the concurrent from the non-concurrent case, by

1014

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA N. Vasilakis, B. Karel, Y. Palkhiwala, J. Sonchack, A. DeHon, and J. M. Smith

checking the number of concurrently pending calls in the
function wrappers.

In cases of runtime exceptions, the control flow bypasses
the epilogue, skipping statistics collection. For these cases,
Igniswraps the encapsulated function call with an exception
handler that calls the epilogue and rethrows the exception.
For consistency and performance purposes, module sys-

tems maintain a cache of loaded modules. When an existing
module is imported again in a different part of the codebase,
they return a cached reference to the original module. To
precisely attribute load to the right bridge between mod-
ules, Ignis’ profiling transformations return a fresh wrapper
function upon each load. For example, if modules A and B

import C, B may be placing 10× more load on C than A does.
Such a 1:M function mapping does not affect module con-
sistency and has negligible effects on performance (except
in cases of meta-programming (§5.2)) but offers noticeable
improvements to load attribution.

4.2 Application-wide Coordination

Ignis starts by setting up an application-wide coordinator—a
logically centralized control hub that builds a registry of
the available resources, interfaces with the agents at mod-
ule boundaries, analyzes distribution recipes, and pushes
guidelines to the boundary agents. Ignis daemons, cut-down
versions of the coordinator, execute on other hosts that be
used for scale-out, reporting on local resources, listening for
replication requests, and transforming replica interfaces (§5).
Resource Registry On every node, coordinators poll the
underlying environment for software and hardware infor-
mation. Newly configured daemons report this information
up towards the parent coordinator.

Information on the software environment focuses on the
operating system, language runtime, and various built-in
libraries. Among other reasons, this is important for modules
compiled to execute natively as well as module dependencies
that need to be installed globally. For example, imagine a
module that needs root permissions but happens to not be
available on a specific node. As Ignis cannot set up this
module during runtime, it will not be able to replicate and
schedule calls to that module on this particular node.
Hardware information includes memory configuration,

CPU speed, and bus speed. Information about the charac-
teristics of the network (e.g., latency) is continuous, and
extracted periodically from the performance of call traffic.
Boundary Registration After import (§2.2) and transfor-
mation (§4), the newly transformed boundary registers with
the coordinator. The rewired require function notifies the
coordinator with a message that includes identifiers of the
parent and child modules, pointers to the original and trans-
formed DAG handles, and a pointer to the local recipe.

The new boundary is added to a list of boundaries mon-
itored by the coordinator. The list is ranked by need-to-
replicate, recalculated with every new update the coordi-
nator receives from a boundary. The calculation focuses on
the fraction of the execution time taken by each module, and
is updated at a frequency set by the coordinator.

If the update leads to changes in the list, boundary agents
whose ranking changed are notified. This notification con-
tains guidelines that allow modules to make online decisions,
including the minimum and maximum number of replicas
and the threshold values of the formulas (1) and (2).
Load Attribution Agents running at each boundary can-
not “see through” modules in order to attribute load among a
module and its dependencies correctly. For example, an agent
at the outermost boundary A of a dependency tree A→B→C

does not know how much of the latency comes from B.
To solve this problem, Ignis relies on the coordinator,

which understands the structure of dependencies and can
correctly calculate how much of the latency comes from
each module. Such a calculation is more complicated than a
simple subtraction, as a module may invoke interfaces from
multiple modules at the same time. The technique of creating
1:M wrappers (end of §4.1) alleviates much of the problem.

5 Distributing Modules

Transforming a system into a distributed version amounts
to scaling out individual bottlenecked modules (§5.1) while
selectively maintaining the illusion of a single runtime (§5.2).

5.1 Scaling Out

To scale a module out, Ignis (i) creates a new process im-
porting the module and Ignis-specific libraries, (ii) sets up a
communication channel between the old and new process,
and (iii) schedules calls across all the replicas.
Setup Ignis spawns a new operating system process on a
node that fits certain criteria, such as light load, acceptable
latency, and compatible versions of packages.

The new process binds to a fresh (IP ,port) pair, used both
as a communication handle and as a unique node identifier.
Nodes communicate over TCP even for processes colocated
on the same machine, as TCP is system-agnostic and hides
the distinction between local and remote communication.
The newly spawned node first loads a copy of Ignis to (i) set
up the channels and, when needed, extract characteristics
of the hardware, (ii) interface with the coordinator on the
parent process (or higher in the module/process hierarchy),
and (iii) further respond to increased loadwithin that module.
Transformations Scale-out transformations focus on re-
placing a local module with a thin client that forwards calls
to a set of remote modules (Fig. 6). To create a thin client of
the same type as the original module, Ignis inspects the DAG

1015

Ignis: Scaling Distribution-Oblivious Systems with Light-Touch Distribution PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

dtf (e: DAG) : DAG := match e with
| Obj ((s, v) :: vs) -> Obj ((s, dtf v) :: dtf vs)
| Arr (v :: vs) -> Arr ((dtf v) :: dtf xs)
| Fun f -> toRPC(e)
| __ -> toInterposed(e)
end

Fig. 6. Distribution transformation. Ignis’ toRPC function takes a func-
tion f1 and returns a function f2 that, when called called, sends the argu-
ments to f1 and calls it. Primitives are wrapped with interposition (Cf.§5.1).

returned by the import call in the new process. It recursively
replaces each node in the DAG with a wrapper:
• primitive values are wrapped with an interposition mech-
anism that records and propagates changes.

• function values become RPC stubs that serialize argu-
ments, send them via the channel, and collect results.

• mutable values have their getter and setter functions re-
placed with RPC stubs similar to functions.

• exceptions are re-thrown in the parent context after in-
spection from Ignis running on the parent module.
Ignis maintains a distributed map from module identi-

fiers to (a set of) channel pointers. If a module is already
loaded, Ignis retrieves the channel pointer and returns the
previously-wrapped DAG; this is useful, for example, in cases
where dependencies have a diamond shape (i.e., two different
modules import the same module).
Scheduling Unless instructed otherwise (§6), calls to repli-
cas are scheduled in a round-robin fashion.

Blocking calls yield to the Ignis scheduler, which picks a
replica, serializes given arguments, sends them through the
channel to the chosen replica, and waits for a response. The
child-sidewrapper de-serializes arguments, calls the required
method, and sends results back through the channel. For non-
blocking calls, the parent module wrapper registers an event
listener that invokes the provided continuation when results
become available on the channel.
Challenges A few technicalities on asynchronous replica
spawn and module resolution are worth noting.
Spawning a new process takes several tens to hundreds

of milliseconds (§8), which should be off the critical path—
especially at the point in the execution of the program when
Ignis is in utmost need for performance. Thus, Ignis spawns
each module replica in asynchronous, non-blocking mode
while calls are served by the original module. When the
replica completes initialization and is ready to handle calls,
the Ignis coordinator on the child sends a message with all
the information described in §4.2 to the parent process.

To be able to locatemodules in the new environment, Ignis
needs to patch the module resolution algorithm at the replica.
For replicas running on the same physical host, locating
a module is relatively easy: absolute modules are stored
in well-known locations in the environment (e.g., Python’s

sys.path), modules local to the project are stored within the
application (e.g., JavaScript’s node_modules), and modules
relative to the current location are prefix-resolved at runtime,
by having Ignis prefix the module path appropriately.
Replicas running on different hosts require a more com-

plex runtime resolution, which is avoided by prefetching
modules. To prefetch modules, the dependency chain is ana-
lyzed upon startup by the coordinator (§4.2). Project-local
modules are extracted at startup and pre-fetched upon dae-
mon setup. While some disk space is wasted as the majority
of these modules will not be used, latency on the critical
path is avoided. Absolute modules are resolved similarly
and re-introduced as project-local modules on the new host.
Modules relative to the current location either work unmod-
ified (first replica on a host) or are prefix-resolved by Ignis
(subsequent replicas).

5.2 Maintaining (the Illusion of) a Single Runtime

This section describes several techniques related to trans-
formations intended to maintain the original application
behavior. Whether each one of these techniques is required
or not is a recipe-specific question, discussed in (§6); here,
we merely show how Ignis implements each technique.

The techniques below require additional metadata to be
attached on the serialized value. In Ignis, this is achieved by
adding a new “hidden” __ignis property instead of embed-
ding the entire value in another message.
DistributedReferences To facilitate cross-replica address-
ing, transformations at the replica boundary assign identi-
fiers to non-primitive values. These IDs can be viewed as
distributed, shared-memory pointers which RPCs include in
their messages. Replicas then maintain a “decoding” hash
table, mapping IDs to their in-replica pointers: whenever
they receive a message, replicas use the table to route freshly
deserialized values to the right function (or method).
Generating a fresh ID requires that the new pointer is

different from all other pointers; otherwise, two pointers
refer to the same location and should be assigned the same
ID. This is achieved by maintaining a second “encoding”
hash table from non-primitive values to IDs. In constant
time, Ignis checks if an entry already exists (extracting the
associated ID) or not (inserting a new (val , ID) entry).
The creation of copies during transformation and serial-

ization breaks reference equality. To solve this, when an RPC
leads to a new memory alias in a replica, Ignis attaches an
alias entry to the serialized value. When receiving such a
value, Ignis on the child will create and return a reference to
an existing object. The sender side uses the “encoding” map
to assign a distributed pointer to an object.
The same consideration applies to preserving reference

equality for the root of the DAG between RPCs. A common
pattern in many languages is to have methods that return

1016

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA N. Vasilakis, B. Karel, Y. Palkhiwala, J. Sonchack, A. DeHon, and J. M. Smith

self; such code would break if the return value of the RPC
was a fresh copy of the method receiver.
Call Types Constructors, prefixed by new, are different
from typical functions (i.e., memory allocation outlives the
function call). Ignis inserts additional logic into the RPC
stubs to detect this case,1 and augments RPC messages to
signal that the target functions should also be called as con-
structors. The return value from a constructor is in turn
transformed into an object whose methods are RPC stubs
(§5 and Fig. 6): the true object lives within its own replica.

Similarly, standard garbage collection (GC) cannot “see
through” boundaries. To solve this, Ignis also propagates
garbage collection events by adding GC hooks to every object
that is the result of a transformation. These “weak finalizers”
fire when the object is about to be collected, causing Ignis
to broadcast a message for removal of that object from any
auxiliary tables.With no inbound pointers, objects in replicas
will be collected in the next cycle.

Although state updates via method calls are redirected to
remote objects, direct updates via property values require
custom detection and propagation. Ignis wraps the trans-
formed output DAG with an interposition mechanism that
provides reflection capabilities and gets invoked upon prop-
erty accesses.2 This wrapper detects and records changes to
any of the object’s properties. Further nested wrappers mon-
itor nested objects (Fig. 6). A similar mechanism is used to
detect program- or user-initiated invalidation in the module
cache (e.g., to reload a module): a cache wrapper detects and
broadcasts entry invalidation.
Although unusual, modules other than Ignis may dy-

namically rewrite module interfaces. If Ignis is loaded ear-
lier, these modules will attempt to overwrite the RPC stubs
instead of the encapsulated methods. The DAG interposi-
tion wrapper described above detects accesses and applies
rewrites internally. Such rewrites are simplified by not hav-
ing to cross channels, as they occur long before scale-out.
Environment Binding Generally, names defined by the
programming language or standard libraries are valid on all
replicas: language constructs such as the top-level Object
are implemented in the runtime; stateless libraries such as
crypto and location-agnostic OS-wrappers such as net are
made available unmodified within a replica.
Certain global or pseudo-global3 constructs may require

redirection to the top-level process. For example, a replica’s
out and error streams must appear in the respective streams
of the top-level process. Ignis on each replica transforms
and shadows these methods with RPCs that redirect their
arguments to the top-level process.

1 For example, __call metamethod in Lua and new.target in JavaScript.
2 For example, metatables in Lua and Proxy objects in JavaScript.
3 JavaScript implementations introduce objects that are not part of the
EcmaScript specification into the global scope, such as process and console.
Similarly, Lua’s Luvit introduces its own globals, such as p() and exports.

AccountRouting FS Logger

Round
Robin

Consistent
Hashing

Ordered
Merging

Fig. 7. Effects of recipes. Call distribution across replicas of the wiki’s
authentication submodules, as a result of recipes (Cf.§6).

Other built-in libraries are replaced by scalable, distributed
versions. This replacement is achieved by transforming the
DAG of the specified built-in module on every replica with
functions that call into the distributed version. A notable
example is the fs module, with a large and well-explored
space of available trade-offs. At one end of the spectrum
lies a partitioned fs with strong consistency guarantees that
redirects accesses to a single authoritative node. At the other
end of the spectrum lies a replicated fs that distributes ac-
cesses in an eventually consistent fashion across a subset of
nodes, using a consistent-hashing scheme [39, 82].

Finally, objects may invokemethods inherited from classes
higher in the hierarchy. These superclasses—or prototypes,
for prototype-based languages such as Lua and JavaScript—
may have been imported from a different module. A naive
implementation of transformations to RPC stubs can thus
lead to a series of nested round-trips until a call reaches the
correct destination. Ignis detects class (prototype) hierarchy
levels while traversing the DAG and creates a dispatch table
with RPC stubs that route calls to the final destination.
Maintaining Ordering Although communication primi-
tives across a single edge are reliable and in-order, messages
that cross multiple edgesmay arrive out of order. Tomaintain
ordering, serialized values are assigned an internal sequence
number. Sequence numbers are generated at the call site and
follow the value as it travels through the system. In cases
where the value is changed or replaced by a new one, the
sequence number is extracted and transferred along.

6 Distribution Recipes

Recipes are runtime configuration objects that give devel-
opers the ability to tune several trade-offs related to the
resulting distribution [1, 30, 53] without requiring manual
development. They are responsible for generating transfor-
mation parameters and configuring deployment details. The
latter is important in order to identify which nodes can be
used for scaling out a module. The large number of modules
and their different requirements make this challenging (but
we do not discuss it in more detail here).

Fig. 7 shows the (semantic) result of annotating the wiki’s
authentication subsystem (§2.3) with recipes.Module routing
spreads calls homogeneously over the two account replicas.
Module account spreads consistently over fs—that is, iden-
tical arguments at any of the account call sites will hit the
same fs node. Module logger orders calls to avoid mixing
logs from different requests.

1017

Ignis: Scaling Distribution-Oblivious Systems with Light-Touch Distribution PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

Ordering highlights some interesting features. First, as it
degrades performance, it can be enabled only for a limited
amount of time—benefiting from recipes being runtime con-
structs. Second, order is not enforced for direct accesses, such
as assignments that change logging levels. While stronger
consistency can be guaranteed with different recipes, the
developer here expects logger levels being set only once and
probably at the start. This is a case where causal consistency
between assignments and calls (but not between calls) can
be exchanged for strong eventual consistency.

Writing recipes is equivalent to specifying a system’s dis-
tribution properties. Reasoning about them, rather than the
mechanisms by which these properties are implemented,
reduces the chance of errors while scaling out a system.
Recipe Expressions Recipes can be expressed at the level
of a program, propagating down to the rest of the dependency
chain, or at that of individual modules. Ignis’ built-in recipes
are overridden by program-level recipes, which are in turn
overridden by recipes accompanying individual modules.
System-wide recipes describe how to configure the dis-

tributed system, and include: profiling details such as queue
depths and saturation levels, decomposition limits such as
replica counts and module groups, expected semantics of
augmented built-in libraries (e.g., fs), and module priori-
ties, such regex patterns for modules that should or should
never scale out. Users also need to provide the details of the
daemons running on remote nodes; Ignis can then config-
ure the details by querying the daemons. Here is a typical
program-wide recipe, extracted from an experiment:

1 nodes :[{ip: "128.30.2.133", port: 8013}] ,

2 fs: ignis.fs.EVENTUAL ,

3 cold: [/ process/],

4 hot: [/ejs/, /.* dash/]

It configures Ignis so that an additional node can be used
to launch replicas (1), the standard fs module is replaced by
an Ignis-provided, eventually consistent one (2), the process
module should not be replicated (3), and ejs and lodash

should be distributed by default (4).
Module-specific recipes give developers fine-grained con-

trol over distribution, allowing them to express intuition
about individual modules they import:

1 copies: [2, 10],

2 fs: ignis.fs.LOCAL ,

3 order: false ,

This module should inherit the global recipes specified
earlier. Moreover, it should have a minimum of two and a
maximum of 10 replicas running (1), use the local fs on each
node (2), and not need any ordering (3).
Discussion Tab. 2 summarizes more recipes, a few non-
obvious characteristics of which are worth clarifying.
Being dynamic objects, recipes are flexible. They can be

re-generated at runtime and change during the lifetime of

Tab. 2. Ignis recipes. Selected recipes and their default parameters (Cf.§6).

Recipe Options Default Explanation

Nodes [{ip:. . . }] localhost Nodes running Ignis
Level 0, 1, .. 1 Decomposition depth
Group subtree.json — Group module subtrees
Hot ["util"] parse, crypto Always distribute module
Cold ["fs", "os"] process, fs Never distribute module
Copies true, [2, 8] [0, CPU] Multiple replicas
Sched RR, MLF, Weigh RR RPC scheduling policies
Q_Depth 10--100K Inf Inter-module queue depth
On_Fail (e) => {..} throw Module failure hook
Saturation (lvl) => {..} — Saturation level hook
Comm TCP, UDP TCP Communication type
Preload true, false false Load proactively, not lazily

the program—even between different imports of the same
module. For example, different branches of the control flow
can load the same module with different recipes.

Currently, Ignis defaults to recipes that are conservative,
in the sense that they will never attempt distribution that
breaks the semantics of the program. For example, purely
functional built-in libraries such as parse and crypto default
to permitting distribution, but process and fs do not.

Since recipes affect the semantics of the resulting program,
an obvious question is whether developers can get them
wrong. The answer is yes, but this is no worse than other ap-
proaches that aid distributed programming: for example, de-
velopers are free to introduce side-effectful computations in
MapReduce’s purely functional primitives [20]. Ignis makes
reasoning about semantics easier, as it concentrates the de-
cisions that could break semantics into the recipes, rather
than forcing them to be interleaved with application logic.
Our position is that there is much more room for error by
avoiding aid from tools like Ignis and MapReduce altogether
and building distributed systems from scratch.

7 Implementation

We built a prototype of Ignis for the JavaScript ecosystem,
consisting of 3K lines of JavaScript code atopAndromeda [87]
and available via npm -i @andromeda/ignis.

Andromeda is a distributed overlay environment provided
as an extensible library of distributed services. Example ser-
vices include distributed storage, inter-node communication,
and task orchestration. Ignis builds on the primitives pro-
vided by Andromeda to implement monitoring, adaptive
scaling, and wrappers for built-in libraries such as fs. An-
dromeda can be executed atop any JavaScript runtime, but
on Unix it defaults to Node.js [19], a runtime that bundles
(i) Google’s V8, a fast JIT compiler, (ii) libUV, asynchronous
cross-platform OS wrappers, and (iii) a small set of stan-
dard libraries (e.g., crypto). For every node in the distributed
system, Andromeda spawns a separate userspace process.
Applications interact with Ignis via JavaScript’s built-in

require function. Recipes are encoded as JavaScript objects

1018

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA N. Vasilakis, B. Karel, Y. Palkhiwala, J. Sonchack, A. DeHon, and J. M. Smith

and passed as the second parameter. Due to variadic argu-
ments, recipe-infused codebases remain backward-compatible
with Ignis-less runtimes.

8 Evaluation

At a high level, we are interested in understanding four as-
pects of Ignis: (i) the overheads of different Ignis elements,
(ii) the fidelity of its runtime profiling, (iii) its behavior under
load, and (iv) its benefits compared to manual application dis-
tribution. For the first, we use microbenchmarks that stress
different parts of Ignis (§8.1). For the rest, we use a combi-
nation of synthetic (§8.2) and real (§8.3–8.5) applications.
Several takeaways are worth highlighting. Scaling out

with Ignis can require minimal code changes, less than
0.001% of a complex codebase (§8.5). Even for simple applica-
tions and scaling goals, this represents 10-20× less effort than
manual approaches and avoids the introduction of bugs (§8.3).
In a case study where we scale a web crawler to better utilize
a 60-core host, Ignis leads to speed-ups of 27× (§8.4). Aside
from speed-ups, Ignis reduces memory requirements by up
to 11× compared against typical whole-application replica-
tion, by only replicating bottlenecked components (§8.5).

Experiments were run on a network of five workstations
connected by 1Gbps links: one largemachine (a1) with 251GB
of memory and 64 2.1GHz Intel Xeon E5-2683 cores, and
four smaller machines (q1-4), each with 4GB of memory and
two 3.33GHz Intel Core Duo E8600 processors. No special
configuration was made beyond disabling hyper-threading—
specifically, the network protocol stackwas left unoptimized.4
For our software setup, we use Node.js 6.14.04, bundled with
V8 v.5.1.281.111, libUV v.1.16.1, and npm v.3.10, executing
on top of Linux kernel v4.4.0-134.

8.1 Microbenchmarks

No-op Modules To understand Ignis’ inherent startup
and communication costs, we run a few microbenchmarks
comparing Ignis with the unmodified module system as a
function of the number of replicated modules. We remove
orthogonal network concerns by running experiments lo-
cally on a1, and minimize the effects of module sizes and
transformations by creating “no-op” modules.

Tab. 3 rows 2 and 3 show the base startup time of modules
that return a single integer. Ignismodules incur significantly
higher startup times, but these overheads are amortized as
the number of modules increases.
Vanilla JavaScript loads modules sequentially. However,

Ignis-replicated modules can amortize their (much more ex-
pensive) startup costs by leveraging parallelism—an idea that
(at least in part) motivated asynchronous spawning (§5.1).
Asynchronous spawning raises concerns regarding interfer-
ence with the main process on a single host. To investigate
this, we start 5K modules in parallel (total time: 15.4s, avg:
4 Features such as kernel bypass [71] should yield significant improvements.

Tab. 3. Replication overheads. Replica (i) startup (rows 2, 3) and (ii)
communication (rows 4–8) costs for different numbers of replicas (Cf.§8.1).

Module Replicas (Single Host) 5 50 500

Startup Overheads:
Latency (Unmodified) 12.9ms 106.6ms 824.7ms
Latency (Ignis) 342.5ms 1.4s 6.2s

Communication Overheads:
Latency (Unmodified) 6.5ns 90.18ns 294.3ns
Latency (Ignis) 27.15ms 388.55ms 11.05s
Throughput (Unmodified) 192.3GB/s 157.1GB/s 46.5GB/s
Throughput (Ignis) 158.1MB/s 134MB/s 20.9MB/s

3ms/module) while a main module “mines” SHA512 hashes.
Hash rate, about 5.4 MH/s, essentially remains unaffected.

Tab. 3 rows 5–8 show the cost of communication (remote
invocation), by processing an in-memory stream of 1GB
across a series of modules. The stream starts only after all
connections have been established (i.e., no TCP handshake
costs included). As expected, copying the payload (rather
than passing pointers) is significantly more expensive.
Real Modules To understand startup and communication
costs on real modules, we run single-replica experiments on a
diverse set of popular modules under three configurations: (i)
vanilla, (ii) co-located distribution (as before), (iii) networked
distribution. Their source-level aspects (Tab. 4) affect startup
times, whereas call argument sizes affect invocation times.
Fig. 8 shows module startup costs. Distribution requires

transforming modules (RPC stubs), communicating them to
the remote node, and launching replicas there. The startup
time of larger modules is dominated by file-system accesses
(e.g., cash takes 798.2–1049.1ms to load all of its files). The
startup time of smaller modules, such as verbs and pad, is
dominated by constant factors (e.g., 138.5ms for process
spawn and 17.6–35ms for TCP setup).

Fig. 9 shows inter-module communication costs over the
same configurations. To bring these costs into perspective,
we embedmodules in “no-op” HTTP applications. By placing
these modules behind an HTTP server, we can study Ignis’
impact on the end-to-end latency an HTTP client would
experience. Processing-heavy modules such as pad and nacl

are tested under input of size 5B (S) and 5MB (L).
To understand the costs of boundary interposition, we

measure the time to access deeply-nested properties of two
versions of an object: unmodified and proxy-wrapped. Paths
to the properties (e.g., a.b.c.. . .) are random but generated
prior to running the experiment. We construct 500MB-sized
objects, each with a fanout of 8 fields (DAG child nodes)
nested for 12 levels. The proxy-wrapped version introduces
interposition at every level. Traversing one million 12-edge
paths (i.e., root to leaves) averages 167.2ms and 595.7ms for
the unmodified and proxy-wrapped versions, respectively.
Towards Practical Overheads The micro-benchmarks
presented in this section highlight Ignis-inherent overheads

1019

Ignis: Scaling Distribution-Oblivious Systems with Light-Touch Distribution PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

Tab. 4. Characteristics of the benchmarked modules. Module short-
hand, size in terms of lines of code (LoC), number of files (Files), number of
nodes in the import return object (DAG), depth of dependency graph (DD),
average fan-out of the dependency graph (F-O), number of function values
(f s), overview of its internals (Notes) (Cf.§8.1).

Module LoC Files DAG DD F-O f s Notes

verbs 29 1 28 2 27.0 0 constant string-to-string map
pad 52 1 1 1 1.0 1 small, pure function
cash 451725 10839 75 7 314.0 49 large library with system calls
chalk 145706 9630 5 3 5.3 2 builder objects/cascading calls
debug 554746 8657 34 4 51.3 14 varargs; output to parent stream

ejs 59396 4950 25 4 12.0 11 extensive, pure, testing fixtures
dns 4826 1 60 3 34.0 16 built-in module, async calls
nacl 94686 5387 54 5 40.8 42 CPU crypto processing

verbs
pad

cash
chalk

debug
ejs

dns
nacl

Latency (ms)
0 25 50 75 100

Import
Transform
Setup Chann.
Serialize
Transmit
Deserialize
Proxify

112.12

Fig. 8. Startup latency breakdown. Each module is measured under three
configurations: unmodified (short bar, only import), co-located on the same
host (medium bar), and scaled out across the network (Cf.§8.1).

verbs
pad-S
pad-L

cash
chalk

debug
ejs

dns
nacl-S
nacl-L

HTTP/send
IPC/send
Invocation
IPC/recv
HTTP/recv

Latency (ms)
0 10 20 30 40

48.08

42.44

Fig. 9. Call latency breakdown. Same configurations as Fig. 8 (Cf.§8.1).

by using carefully-constructed, worst-case workloads that
are nowhere near the ones seen in practice (§8.3–8.5): 1GB-
sized function-call arguments, deeply-nested 0.5GB-sized
module interfaces, and near-zero module-internal latencies
(that in practice would not lead to scale out).

8.2 Synthetic Applications

To better understand Ignis’ profiling and distribution in a
controlled environment, we craft a four-module application
with pre-defined bottlenecks. The application can perform
one of three operations, depending on its current state: (i)
invoke a call to a module it imports, (ii) busy-wait, or (iii)
accept calls. State transitions are controlled by a probability
distribution; and modules can introduce additional delays.
The application accesses modules m1 and m2 with equal prob-
ability; m1 accesses m3 and m4 similarly, but m2 accesses m3

three times more often than it does m4. The four modules add

app

app

ou
t

in
m1

m2

m1 m2

ou
t

in

load

m1

m2

m3

m4

m1 m2 m3 m4
in

ou
t

Fig. 10. Boundary pressure. The dependency graph of an application with
four modules is presented as an adjacency matrix at different granularities.
Instead of a single bit, cells of adjacent modules are labeled with the heat
(load) of the boundary they represent, as recorded by the Ignis coordinator.
The diagonal represents pressure internal to a module (Cf.§8.2).

a delay of 10ms × their depth in the dependency graph. The
application is part of Ignis’ testing infrastructure, encoding
well-understood scenarios with the goal of verifying that
scale-out follows the developer’s intuition.

Fig. 10 depicts the importance of fidelity in load attribution.
Load is visible at the application level (left), but the lack
of detail does not help determine which modules must be
scaled out. Module-level data, collected by Ignis’ coordinator
(right), reveal that m3 receives the majority of the load.

Manually deciding which module to scale out would re-
quire installing linux-tools, setting up perf [32], resolving
JavaScript symbols with V8’s --perf-basic-prof, recoding
event samples, mapping samples to modules (using stack
information), and visualizing results. Many of these steps
would need to be repeated for every new bottleneck and,
after scale-out, combine results from multiple replicas.
Ignis reaches the decision to scale out within a few hun-

dred milliseconds, primarily because of lack of confidence
due to cold-start effects. By observing long inter-module
queues and a sufficient number of idle processors, Ignis
launches three replicas of m3 at once.

8.3 Macrobenchmark: A (very) Simple Weblog

Scaling out a system is often as easy as upgrading to a readily-
available distributed storage system. This is the simplest case
of bolt-on distribution, because it does not require thinking
deeply about the structure of the computation. To compare
with such minimum-effort rewrites, we plug a distributed
key-value store into a simple blog application.

KoaBlog [36] (commit 1fd5316) is a small application for
learning the Koajs web framework. The blog manipulation
code totals 50 lines and imports six direct dependencies, for
a total of 160 packages and 96 KLoC. Entries are indexed by
an integer ID. They are stored on disk using methods from
the built-in fs module (e.g., write, readdir).
Even though KoaBlog is a trivial application, the manual

effort required to use a NoSQL system such MongoDB [14]
(v.3.4.10) is considerable. We first use npm to download and
import the monk module for interfacing with MongoDB, sim-
ilar in effort to importing Ignis. We then create a database
schema, and configure the connection to the master node—
including details such as binding address, port, and username.
We also remove the import of the fs module, and rewrite

1020

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA N. Vasilakis, B. Karel, Y. Palkhiwala, J. Sonchack, A. DeHon, and J. M. Smith

all file-system operations such as read and write to make
use of monk’s find and insert. All the above is expressed in
JavaScript and within KoaBlog, in a diff that totals 11 lines
(22% of end-developer code). However, it omits lines typed
in the MongoDB and Unix shells (outside npm and requiring
sudo): fetching and installing MongoDB, configuring admin-
istrative users, setting up one master and two slave nodes,
and connecting MongoDB’s startup with KoaBlog.
Adapting KoaBlog also required fixing two bugs that we

unintentionally introduced. First, by replacing all fs.writes
with inserts, we broke updates; fs.writes corresponding to
updates should have been replaced by updateById, not insert.
Second, we misconfigured the binding address and port of
one node. These bugs were not difficult to fix, but illustrate
the inherent dangers of manually scaling out an application,
even when the modifications seem straightforward.

In contrast, with Ignis this scale-out requires a short recipe
at the fs import: require("fs", {copies: 3}) (aside from
downloading and importing Ignis, à la monk). The recipe spec-
ifies a minimum and a maximum number of three replicas,
similar to Mongo’s setup. Ignis launches three replicas of the
fs module (see “Environment Binding” in §5.2 for built-ins),
traverses the return DAG of the original fs, and rewires meth-
ods such as readFile and writeFile to call Andromeda’s
distributed storage equivalents. Node.js’s fs methods take
optional arguments such as encoding (e.g., UTF-8) and access
mode (e.g., RW). As Andromeda stores objects (rather than
files), Unix flags such as RWwere initially a concern; however,
existing support for UTF-8 was enough to avoid breakage.
To evaluate performance, we pre-populate KoaBlog with

10K posts of 1.1MB each, and issue a 2-minute HTTP GET

workload of 5K req/s. To saturate disk bandwidth and “force”
Ignis to scale out, we initiate three local, parallel, long-
running cp commands in the background. Distribution im-
proves request latencies significantly (table below) as well
as request throughput and transfer rates: 24 requests per

Percentile 50% 90% 99% 99.9%

Baseline 154ms 1028ms 4731ms 8905ms
Ignis 65ms 231ms 318ms 1187ms

second (28.2MB/s) become 88.22 (103.5MB/s). No significant
difference between Ignis and MongoDB was noticed; this
is expected because no advanced indexing, replication, and
consistency features were used, where the two diverge.
These performance improvements are on top of the base

benefits of storage distribution—increased capacity (com-
bined, q1-4’s disk capacity is over 1TB) and availability (3×
replication). (This availability is different from the fault-
tolerance of Ignis itself, which is left for future work (§10).)
The introduction of Ignis does not impact the memory con-
sumption of the main node. This is because the koa-* mod-
ules dominate, whereas the newly-introduced ignis module
is comparable in size to fs.

8.4 Macrobenchmark: Document Ranking

For amore complex application, we consider a customnatural-
language processing (NLP) pipeline that is used as part of a
larger web crawler application. As documents arrive, the NLP
pipeline extracts word stems, removes stop-words, normal-
izes terms, creates n-grams of sizes 2–5, and runs frequency
analyses. The pipeline is built around v0.6.3 of natural, a
third-party package for NLP, and applied on 200 books, each
averaging 1MB, from the Project Gutenberg corpus [34].
Scale-out depends on the relative overheads of different

NLP stages. Skipping themanual effort of profiling (described
at the end of §8.2), manual scale-out would need to extract
the interfaces of used modules, generate RPC stubs (e.g.,
gRPC [83]) and load them remotely, start communication
servers, and balance load at runtime. We did not attempt this;
instead, we added require("ignis", {hot: ["natural"]}).
The centralized version processes at a rate of 22.2 doc-

uments per minute (2.7s per document). Ignis improves
throughput by a factor of 27× to 612.8 documents per minute
(97.9ms per document). While Ignis sees gains in launching
more processes on the local host, it does not see any gains
in further distributing across physical hosts. The reason is
that the crawler does not feed the NLP pipeline with docu-
ments at a rate that is high enough to benefit from networked
distribution (in our setup).

8.5 Macrobenchmark: Wiki Engine

For a complex application, we turn to wiki.js (2.0.0-dev),
a popular wiki engine that imports 130 top-level modules;
counting recursive imports, the total jumps to 1640 mod-
ules and about 597K lines of code. We augment wiki.js with
uri-js v2.1.1, an extensible URI parsing and validation li-
brary that is fast in the average case but can sometimes spend
upwards of 400ms per URI in pathological edge cases. This
leaves wiki.js susceptible to denial-of-service attacks [17]
(ReDoS) and slowdown in certain non-adversarial workloads.
We use Ignis to mitigate this with a simple two-line recipe
(i.e., less than 0.0005% of the codebase) that scales out uri-js.

Under normal operation, when no URIs in the workload in-
voke the edge cases in uri-js, Ignis introduces little runtime
overhead. Issuing an HTTP load of 5Kreqs/s on wiki.js’s
sample dataset, the unmodified wiki responds with an aver-
age latency of 34.1ms (σ : 2.1ms). Introducing Ignis bumps
latency to 34.3ms (σ : 2.8ms). Changes in memory consump-
tion, which averages around 100MB, remain below 0.01%.
With a workload that contains even a small fraction of

pathological URIs, the benefits of Ignis become significant.
Servicing a workload with 99% benign URIs and 1% patho-
logical URIs, the throughput of the unmodified wiki drops
to 197req/s (15.2s per request, σ : 11.04s). Ignis, on the other
hand, achieves a throughput of 208req/s (8.1s per request, σ :
4.9s) when distributing to q1-4’s four network replicas. When
distributing to 60 replicas on a1, it achieves a throughput of

1021

Ignis: Scaling Distribution-Oblivious Systems with Light-Touch Distribution PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

1,880req/s (42.66ms per request, σ : 1.35ms). Ignis detects the
load pressure applied on uri-js within the first few patho-
logical requests, scaling out in under half a second.

Memory consumption of each replica is about 17.3MB, the
vast majority of which comes from the Node.js runtime and
libraries. For comparison, naive application replication leads
to a total memory footprint of 1.1GB (on top of the “master”
wiki.js consumption).

9 Related Work

Our techniques are related to a large body of previous work
in several distinct domains.
Automated Parallelization There is a long history of
automated parallelization starting from explicit DOALL and
DOACROSS annotations [12, 51] and continuing with compil-
ers that attempt to automatically extract parallelism [33, 65].
These systems operate at a lower level than Ignis (e.g., that
of instructions or loops instead of module boundaries) and
typically do not exploit runtime information.

More recent work focuses on extracting parallelism from
domain-specific programming models [28, 31, 46] and inter-
active parallelization tools [38, 40].While these tools simplify
the expression of parallelism, programmers are still involved
in discovering and exposing parallelism. Moreover, the in-
sights behind these attempts are significantly different from
ours, as they extract parallelism statically during compilation
instead of dynamically during runtime.
Distributed Environments A plethora of systems assist
in the construction of distributed software. At one end of the
spectrum, distributed operating systems [4, 22, 58, 64, 67, 69,
72, 73, 76, 89] and programming languages [25, 43, 77, 88]
provide a significant amount of flexibility in the resulting
application. However, they involve significant manual effort
using the provided abstractions, which are strongly coupled
with the underlying operating or runtime system. Light-
touch distribution does not make assumptions about the
underlying operating system, and makes only minimal as-
sumptions about the language runtime.
At the other end of the spectrum, distributed comput-

ing frameworks [20, 60, 61, 68, 92] and domain-specific lan-
guages [2, 6, 23, 56, 57] simplify certain patterns, but do not
offer the flexibility of a full-fledged environment. Developing
under these frameworks differs quite significantly from how
developers normally compose applications. In Ignis, develop-
ers write general programs as they would do normally—only
sprinkling them with “control-plane” insights.
Object-based Distribution Several language-based ap-
proaches attempt to provide a single system image (SSI), ei-
ther under new [9, 13, 49, 52] or existing languages [3, 5, 94].
The latter are closer to Ignis, but focus on SSI rather than
component replication (except pure-function replication for

cJVM [3]), and do not support dynamic profiling-based scale-
out. They also impose a cluster-aware version of the JVM,
whereas Ignis comes as a third-party module running on a
completely unmodified V8.
Taurus’ policies [54] and Terracotta’s annotations [10]

share the same flexibility-automation philosophy as Ignis’
recipes, albeit at different levels. Taurus does not transform
non-distributed applications, but is complementary to Ig-
nis: using a holistic runtime would have helped coordinate
just-in-time compilation, module spawning, and garbage col-
lection across nodes. Terracotta’s approach (see AOP below)
requires significantly more developer effort, and does not
support distributing the standard library (à la fs for Ignis).
More generally, distributed operating systems, program-

ming languages, and language-based run-times are closer
to Andromeda [87]—the platform upon which Ignis was
developed—than Ignis itself.
Application Partitioning Automated application parti-
tioning [37, 91] and mobile code offloading [15, 18, 24, 45,
74, 90] introduce (opaquely) the network into the applica-
tion. Applications are split into a small number of parts,
typically two: one runs on the server with nearly unlimited
resources, while the other runs on the client with very con-
strained resources. There is no runtime profiling, and often
no performance-oriented component replication [37, 91], as
the goal is to hide the network and offer a continuum to the
end-user. Wishbone [63] partitions sensornet programs auto-
matically, but only if written in a custom stream-processing
language and with predictable input patterns.

Circus [16] and ISIS [7] exploit development-time module
structure, but their replication focuses on fault-tolerance
instead of scalability. Circus forwards calls to all replicas,
whereas ISIS uses a primary-backup scheme. In contrast
to Ignis, they operate in a static environment and without
runtime introspection, decomposing applications at compile-
time. They also assume knowledge of module requirements
and deterministic, idempotent modules whose semantics
remain locked; in Ignis, such domain-specific information is
expressed via recipes and can change at runtime.

Security-oriented compartmentalization [8, 11, 44] decom-
poses software into multiple isolated components with the
goal of improving its security properties—and often at the
boundaries of (third-party) modules [47, 59, 84, 86]. How-
ever, it does not leverage runtime profiling, and is usually
static, targeting privilege reduction rather than performance
increase. DeDoS [21] includes profiling for denial-of-service
attacks, but requires users to structure their applications in
terms of minimum schedulable units (MSUs).
ComponentArchitectures Lambda [26, 35] andmicroser-
vice [27, 62] architectures build server applications as sets of
loosely-coupled components. While in principle small and

1022

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA N. Vasilakis, B. Karel, Y. Palkhiwala, J. Sonchack, A. DeHon, and J. M. Smith

light, both are vastly more coarse-grained than language-
level modules. Whereas a single multi-hundred-package mi-
croservice can scale out independently, light-touch distri-
bution can scale out individual components of a single mi-
croservice. Moreover, communication between services is
request-response style and is made explicit to the applica-
tion. Most importantly, such decomposition is a manual
process that requires careful design, including agreeing on
the interfaces, prior to development.
Transformations Aspect-oriented programming (AOP) is
a programming model that maps program join-points to ad-
vice, actions to be taken at these points [41]. For light-touch
distribution, these would be “calls at the module boundary”
and “wrap with profiling”, respectively. Some cross-cutting
aspects around the program could be transformed to their
distributed versions (e.g., built-in fs module). In contrast to
AOP, Ignis does not inject dependencies, therefore control
flow is not obscured. Moreover, developers do not need to
understand different concerns—that is, program structure is
not affected and developers do not alter or introduce code.
More generally, AOP is related to metaobjects [42] that

enable a program to access to its own internal structure,
including rewriting itself as it executes. They are examples
of runtime reflection, of which Ignis makes extensive use to
traverse, understand, and rewrite interfaces; but developers
using Ignis do not need to provide their own metaobjects.
There has been a recent emergence of unsound program

transformations [66, 70, 78, 79] that attempt to alter the
semantics of the original program in principled ways. Light-
touch distribution can be seen as introducing programmer-
guided, “control-plane” semantic hints at the module bound-
aries. Using these hints, programmers effectively guide the
principles behind how the semantics of a program change.

10 Discussion

Ignis’ key enablers—i.e., dynamic languages, module ubiq-
uity, and the programming model (§2.4)—are also its key
limiting barriers for wider applicability. Making Ignis appli-
cable more broadly would require lifting these barriers—for
example, decomposing an application into components even
in the absence of explicit modules and providing bolt-on
scalability without any of the features offered by dynamic
languages.5 Aside from these limitations there are several
potential avenues for future research.
Fault-Tolerance The distributed versions of built-in mod-
ules provide a degree of fault-tolerance—e.g., fs for persistent
state. However, the current version of Ignis does not ade-
quately handle replica failures or network partitions in the
general sense, which includes handling calls that were sched-
uled on failed replicas. Call scheduling could be prefixed
5 Recent advances show promise: C-Strider [75] provides type-aware heap
traversal for C programs; LImpMod/LLibcheri [84] and Sandcrust [47] at-
tempt module-level decomposition in compiled languages.

with a form of check-pointing so that, upon failure, Ignis
reschedules the dropped call on a different replica (poten-
tially jumping the queue, to compensate for the lost time).
Moreover, failure-aware scheduling would adapt scale-out
to the unaffected part of the deployment. Ignis would also
need to protect against partial global changes, where only
a subset of nodes receives an update (e.g., write to a global
variable), using some form of consensus. Work on failure-
tolerant light-touch distribution will lead to new recipes for
tuning to failure-related trade-offs.
Profiling Models More sophisticated prediction logic for
profiling and coordination (§4) is critical for elasticity. It
should combine longer call history with the ability to quickly
detect sudden changes in workload characteristics. Moreover,
it should attempt to capture resource heterogeneity—even
the distinction between locally available processors and dis-
tributed hosts. The main challenge is combining sub-linear
space growth at the module boundaries with prediction la-
tency low enough to be useful in online decision-making.
Recipe Inference The inference of recipes—the last bar-
rier to automation—would be extremely useful, but is not
trivial. Static analysis is difficult in environments with few-
to-zero type annotations and modules written in multiple
languages, some of which come compiled. Dynamic anal-
ysis is equally challenging, as it requires carefully tracing
pre-runs that are still not guaranteed to cover all possible
(non-deterministic) interleavings. A combination of tooling
(for space exploration) with some form of learning could lead
to conservative recipes that improve performance without
breaking semantics.

11 Conclusion

This paper introduces light-touch distribution, a first step
towards automating the generation of distributed systems
from distribution-oblivious programs. This is achieved us-
ing a set of programmatic transformations parametrizable
by optional distribution recipes. These operate at module
boundaries during runtime to collect profiling information,
detect bottlenecked components, and dynamically separate
and coalesce parts of the application.

The presented design shows that it is possible to get distribu-
tion benefits out of programs that were not explicitly developed
to support distribution with minimal developer effort.

Acknowledgments

We would like to thank Arthur Azevedo de Amorim, Bill Cheswick,
Radoslav Ivanov, James Mickens, Leonidas Lampropoulos, Nik Sul-
tana, and the anonymous reviewers for helpful thoughts. We are
indebted to our shepherd, Martin Maas, whose detailed comments
and suggestions significantly improved our work and the exposi-
tion of our ideas. This research was funded in part by National
Science Foundation grant CNS-1513687.

1023

Ignis: Scaling Distribution-Oblivious Systems with Light-Touch Distribution PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

References

[1] Daniel Abadi. 2012. Consistency tradeoffs in modern distributed data-
base system design: CAP is only part of the story. Computer 45, 2
(2012), 37–42.

[2] Peter Alvaro, Neil Conway, Joseph M Hellerstein, and William R Mar-
czak. 2011. Consistency Analysis in Bloom: a CALM and Collected
Approach.. In CIDR. 249–260.

[3] Yariv Aridor, Michael Factor, and Avi Teperman. 1999. cJVM: A Single
System Image of a JVM on a Cluster. In Proceedings of the 1999 Inter-
national Conference on Parallel Processing (ICPP ’99). IEEE Computer
Society, Washington, DC, USA, 4–. http://dl.acm.org/citation.cfm?
id=850940.852885

[4] Amnon Barak and Oren La’adan. 1998. The MOSIX multicomputer
operating system for high performance cluster computing. Future
Generation Computer Systems 13, 4 (1998), 361–372.

[5] John K. Bennett. 1987. The Design and Implementation of Distributed
Smalltalk. In Conference Proceedings on Object-oriented Programming
Systems, Languages and Applications (OOPSLA ’87). ACM, New York,
NY, USA, 318–330. https://doi.org/10.1145/38765.38836

[6] Martin Biely, Pamela Delgado, Zarko Milosevic, and Andre Schiper.
2013. Distal: A Framework for Implementing Fault-tolerant Dis-
tributed Algorithms. In Proceedings of the 2013 43rd Annual IEEE/I-
FIP International Conference on Dependable Systems and Networks
(DSN) (DSN ’13). IEEE Computer Society, Washington, DC, USA, 1–8.
https://doi.org/10.1109/DSN.2013.6575306

[7] Kenneth P. Birman. 1985. Replication and Fault-tolerance in the ISIS
System. In Proceedings of the Tenth ACM Symposium on Operating
Systems Principles (SOSP ’85). ACM, New York, NY, USA, 79–86. https:
//doi.org/10.1145/323647.323636

[8] Andrea Bittau, Petr Marchenko, Mark Handley, and Brad Karp. 2008.
Wedge: Splitting Applications into Reduced-privilege Compartments.
In Proceedings of the 5th USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI’08). USENIX Association, Berkeley, CA,
USA, 309–322. http://dl.acm.org/citation.cfm?id=1387589.1387611

[9] Andrew P Black, Norman C Hutchinson, Eric Jul, and Henry M
Levy. 2007. The development of the Emerald programming lan-
guage. In Proceedings of the third ACM SIGPLAN conference on
History of programming languages. ACM, 11–1. http://www.
emeraldprogramminglanguage.org/authorsVersion.pdf

[10] Jonas Bonér and Eugene Kuleshov. 2007. Clustering the Java virtual
machine using aspect-oriented programming. In AOSDâĂŹ07: Proceed-
ings of the 6th International Conference on Aspect-Oriented Software
Development.

[11] David Brumley and Dawn Song. 2004. Privtrans: Automatically Parti-
tioning Programs for Privilege Separation. In Proceedings of the 13th
Conference on USENIX Security Symposium - Volume 13 (SSYM’04).
USENIX Association, Berkeley, CA, USA, 5–5. http://dl.acm.org/
citation.cfm?id=1251375.1251380

[12] Michael Burke and Ron Cytron. 1986. Interprocedural Dependence
Analysis and Parallelization. In Proceedings of the 1986 SIGPLAN Sym-
posium on Compiler Construction (SIGPLAN ’86). ACM, New York, NY,
USA, 162–175. https://doi.org/10.1145/12276.13328

[13] Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher Don-
awa, Allan Kielstra, Kemal Ebcioglu, Christoph Von Praun, and Vivek
Sarkar. 2005. X10: an object-oriented approach to non-uniform cluster
computing. In Acm Sigplan Notices, Vol. 40. ACM, 519–538.

[14] Kristina Chodorow. 2013. MongoDB: the definitive guide. " O’Reilly
Media, Inc.".

[15] Byung-Gon Chun, Sunghwan Ihm, Petros Maniatis, Mayur Naik, and
Ashwin Patti. 2011. CloneCloud: Elastic Execution Between Mobile
Device and Cloud. In Proceedings of the Sixth Conference on Computer
Systems (EuroSys ’11). ACM, New York, NY, USA, 301–314. https:
//doi.org/10.1145/1966445.1966473

[16] Eric C. Cooper. 1985. Replicated Distributed Programs. In Proceedings
of the Tenth ACM Symposium on Operating Systems Principles (SOSP
’85). ACM, New York, NY, USA, 63–78. https://doi.org/10.1145/323647.
323635

[17] Scott A Crosby and Dan S Wallach. 2003. Denial of Service via Algo-
rithmic Complexity Attacks.. In Usenix Security, Vol. 2.

[18] Eduardo Cuervo, Aruna Balasubramanian, Dae-ki Cho, Alec Wolman,
Stefan Saroiu, Ranveer Chandra, and Paramvir Bahl. 2010. MAUI:
making smartphones last longer with code offload. In Proceedings of
the 8th international conference on Mobile systems, applications, and
services. ACM, 49–62.

[19] Ryan Dahl and the Node.js Foundation. 2009. Node.js. https://nodejs.
org Accessed: 2017-06-11.

[20] Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: Simplified
Data Processing on Large Clusters. Commun. ACM 51, 1 (Jan. 2008),
107–113. https://doi.org/10.1145/1327452.1327492

[21] Henri Maxime Demoulin, Tavish Vaidya, Isaac Pedisich, Nik Sul-
tana, Bowen Wang, Jingyu Qian, Yuankai Zhang, Ang Chen, An-
dreas Haeberlen, Boon Thau Loo, Linh Thi Xuan Phan, Micah Sherr,
Clay Shields, and Wenchao Zhou. 2017. A Demonstration of the
DeDoS Platform for Defusing Asymmetric DDoS Attacks in Data
Centers. In Proceedings of the SIGCOMM Posters and Demos (SIG-
COMM Posters and Demos ’17). ACM, New York, NY, USA, 71–73.
https://doi.org/10.1145/3123878.3131990

[22] Sean M Dorward, Rob Pike, David Leo Presotto, Dennis M Ritchie,
Howard W Trickey, and Philip Winterbottom. 1997. The Inferno
operating system. Bell Labs Technical Journal 2, 1 (1997), 5–18. http:
//www.vitanuova.com/inferno/papers/bltj.pdf

[23] Cezara Drăgoi, Thomas A. Henzinger, and Damien Zufferey. 2016.
PSync: A Partially Synchronous Language for Fault-tolerant Dis-
tributed Algorithms. In Proceedings of the 43rd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL
’16). ACM, New York, NY, USA, 400–415. https://doi.org/10.1145/
2837614.2837650

[24] Janick Edinger, Dominik Schäfer, Martin Breitbach, and Christian
Becker. 2017. Developing distributed computing applications with
Tasklets. In Pervasive Computing and Communications Workshops (Per-
Com Workshops), 2017 IEEE International Conference on. IEEE, 94–96.

[25] Jeff Epstein, Andrew P. Black, and Simon Peyton-Jones. 2011. Towards
Haskell in the Cloud. In Proceedings of the 4th ACM Symposium on
Haskell (Haskell ’11). ACM, New York, NY, USA, 118–129. https:
//doi.org/10.1145/2034675.2034690

[26] Marius Eriksen. 2013. Your Server As a Function. In Proceedings of the
Seventh Workshop on Programming Languages and Operating Systems
(PLOS ’13). ACM, New York, NY, USA, Article 5, 7 pages. https://doi.
org/10.1145/2525528.2525538

[27] Martin Fowler and James Lewis. 2014. Microservices. http:
//martinfowler.com/articles/microservices.html Accessed: 2015-02-
17.

[28] Matteo Frigo, Charles E Leiserson, and Keith H Randall. 1998. The
implementation of the Cilk-5 multithreaded language. ACM Sigplan
Notices 33, 5 (1998), 212–223.

[29] Nicolas Giard and Wiki.js Contributors. 2018. wiki.js. https://wiki.js.
org/ Accessed: 2018-09-18.

[30] Seth Gilbert and Nancy Lynch. 2002. Brewer’s conjecture and the fea-
sibility of consistent, available, partition-tolerant web services. ACM
SIGACT News 33, 2 (2002), 51–59.

[31] Michael I Gordon, William Thies, Michal Karczmarek, Jasper Lin, Ali S
Meli, Andrew A Lamb, Chris Leger, Jeremy Wong, Henry Hoffmann,
DavidMaze, et al. 2002. A stream compiler for communication-exposed
architectures. In ACM SIGOPS Operating Systems Review, Vol. 36. ACM,
291–303.

[32] Brendan Gregg. 2013. Systems Performance: Enterprise and the Cloud
(1st ed.). Prentice Hall Press, Upper Saddle River, NJ, USA.

1024

http://dl.acm.org/citation.cfm?id=850940.852885
http://dl.acm.org/citation.cfm?id=850940.852885
https://doi.org/10.1145/38765.38836
https://doi.org/10.1109/DSN.2013.6575306
https://doi.org/10.1145/323647.323636
https://doi.org/10.1145/323647.323636
http://dl.acm.org/citation.cfm?id=1387589.1387611
http://www.emeraldprogramminglanguage.org/authorsVersion.pdf
http://www.emeraldprogramminglanguage.org/authorsVersion.pdf
http://dl.acm.org/citation.cfm?id=1251375.1251380
http://dl.acm.org/citation.cfm?id=1251375.1251380
https://doi.org/10.1145/12276.13328
https://doi.org/10.1145/1966445.1966473
https://doi.org/10.1145/1966445.1966473
https://doi.org/10.1145/323647.323635
https://doi.org/10.1145/323647.323635
https://nodejs.org
https://nodejs.org
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1145/3123878.3131990
http://www.vitanuova.com/inferno/papers/bltj.pdf
http://www.vitanuova.com/inferno/papers/bltj.pdf
https://doi.org/10.1145/2837614.2837650
https://doi.org/10.1145/2837614.2837650
https://doi.org/10.1145/2034675.2034690
https://doi.org/10.1145/2034675.2034690
https://doi.org/10.1145/2525528.2525538
https://doi.org/10.1145/2525528.2525538
http://martinfowler.com/articles/microservices.html
http://martinfowler.com/articles/microservices.html
https://wiki.js.org/
https://wiki.js.org/

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA N. Vasilakis, B. Karel, Y. Palkhiwala, J. Sonchack, A. DeHon, and J. M. Smith

[33] Mary W Hall, Jennifer M Anderson, Saman P. Amarasinghe, Brian R
Murphy, Shih-Wei Liao, Edouard Bugnion, and Monica S Lam. 1996.
Maximizing multiprocessor performance with the SUIF compiler. Com-
puter 29, 12 (1996), 84–89.

[34] Michael Hart. 1971. Project Gutenberg. https://www.gutenberg.org/
[35] Scott Hendrickson, Stephen Sturdevant, Tyler Harter, Venkateshwaran

Venkataramani, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-
Dusseau. 2016. Serverless Computation with OpenLambda. In 8th
USENIX Workshop on Hot Topics in Cloud Computing (HotCloud 16).
USENIXAssociation, Denver, CO. https://www.usenix.org/conference/
hotcloud16/workshop-program/presentation/hendrickson

[36] TJ Holowaychuk and the Koa.js Developers. 2009. Koajs Examples:
Blog. https://github.com/koajs/examples/tree/master/blog Accessed:
2019-03-01.

[37] Galen C. Hunt and Michael L. Scott. 1999. The Coign Automatic
Distributed Partitioning System. In Proceedings of the Third Symposium
on Operating Systems Design and Implementation (OSDI ’99). USENIX
Association, Berkeley, CA, USA, 187–200. http://dl.acm.org/citation.
cfm?id=296806.296826

[38] Makoto Ishihara, Hiroki Honda, and Mitsuhisa Sato. 2006. Develop-
ment and implementation of an interactive parallelization assistance
tool for OpenMP: iPat/OMP. IEICE transactions on information and
systems 89, 2 (2006), 399–407.

[39] David Karger, Eric Lehman, Tom Leighton, Rina Panigrahy, Matthew
Levine, and Daniel Lewin. 1997. Consistent Hashing and Random
Trees: Distributed Caching Protocols for Relieving Hot Spots on the
World Wide Web. In Proceedings of the Twenty-ninth Annual ACM
Symposium on Theory of Computing (STOC ’97). ACM, New York, NY,
USA, 654–663. https://doi.org/10.1145/258533.258660

[40] Ken Kennedy, Kathryn S Mckinley, and C-W Tseng. 1991. Interactive
parallel programming using the ParaScope Editor. IEEE Transactions
on Parallel and Distributed Systems 2, 3 (1991), 329–341.

[41] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda,
Cristina Lopes, Jean-Marc Loingtier, and John Irwin. 1997. Aspect-
oriented programming. In European conference on object-oriented pro-
gramming. Springer, 220–242.

[42] Gregor Kiczales and Jim Des Rivieres. 1991. The Art of the Metaobject
Protocol. MIT Press, Cambridge, MA, USA.

[43] Charles Edwin Killian, James W. Anderson, Ryan Braud, Ranjit Jhala,
and Amin M. Vahdat. 2007. Mace: Language Support for Building Dis-
tributed Systems. In Proceedings of the 28th ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI ’07). ACM,
New York, NY, USA, 179–188. https://doi.org/10.1145/1250734.1250755

[44] Douglas Kilpatrick. 2003. Privman: A Library for Partitioning Ap-
plications. In USENIX Annual Technical Conference, FREENIX Track.
273–284.

[45] Sokol Kosta, Andrius Aucinas, Pan Hui, Richard Mortier, and Xinwen
Zhang. 2012. Thinkair: Dynamic resource allocation and parallel
execution in the cloud for mobile code offloading. In Infocom, 2012
Proceedings IEEE. IEEE, 945–953.

[46] Milind Kulkarni, Keshav Pingali, Bruce Walter, Ganesh Rama-
narayanan, Kavita Bala, and L Paul Chew. 2007. Optimistic parallelism
requires abstractions. ACM SIGPLAN Notices 42, 6 (2007), 211–222.

[47] Benjamin Lamowski, Carsten Weinhold, Adam Lackorzynski, and
Hermann Härtig. 2017. Sandcrust: Automatic Sandboxing of Unsafe
Components in Rust. In Proceedings of the 9th Workshop on Program-
ming Languages and Operating Systems (PLOS’17). ACM, New York,
NY, USA, 51–57. https://doi.org/10.1145/3144555.3144562

[48] Hugh C. Lauer and Roger M. Needham. 1979. On the Duality of
Operating System Structures. SIGOPS Oper. Syst. Rev. 13, 2 (April 1979),
3–19. https://doi.org/10.1145/850657.850658

[49] Edward D. Lazowska, Henry M. Levy, Guy T. Almes, Michael J. Fischer,
Robert J. Fowler, and Stephen C. Vestal. 1981. The Architecture of
the Eden System. In Proceedings of the Eighth ACM Symposium on

Operating Systems Principles (SOSP ’81). ACM, New York, NY, USA,
148–159. https://doi.org/10.1145/800216.806603

[50] R. Levin, E. Cohen, W. Corwin, F. Pollack, and W. Wulf. 1975. Poli-
cy/Mechanism Separation in Hydra. In Proceedings of the Fifth ACM
Symposium on Operating Systems Principles (SOSP ’75). ACM, New
York, NY, USA, 132–140. https://doi.org/10.1145/800213.806531

[51] Amy W. Lim and Monica S. Lam. 1997. Maximizing Parallelism and
Minimizing Synchronization with Affine Transforms. In Proceedings
of the 24th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages (POPL ’97). ACM, New York, NY, USA, 201–214.
https://doi.org/10.1145/263699.263719

[52] B. Liskov, D. Curtis, P. Johnson, and R. Scheifer. 1987. Implementation
of Argus. In Proceedings of the Eleventh ACM Symposium on Operating
Systems Principles (SOSP ’87). ACM, New York, NY, USA, 111–122.
https://doi.org/10.1145/41457.37514

[53] Haonan Lu, Christopher Hodsdon, Khiem Ngo, Shuai Mu, and Wyatt
Lloyd. 2016. The SNOW Theorem and Latency-Optimal Read-Only
Transactions.. In OSDI. 135–150.

[54] Martin Maas, Krste Asanović, Tim Harris, and John Kubiatowicz. 2016.
Taurus: A Holistic Language Runtime System for Coordinating Dis-
tributedManaged-Language Applications. In Proceedings of the Twenty-
First International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS ’16). ACM, New York, NY,
USA, 457–471. https://doi.org/10.1145/2872362.2872386

[55] Neil McAllister. 2012. Twitter survives election after Ruby-to-Java
move. https://www.theregister.co.uk/2012/11/08/twitter_epic_traffic_
saved_by_java/ Accessed: 2019-04-11.

[56] Christopher Meiklejohn and Peter Van Roy. 2015. Lasp: a language for
distributed, eventually consistent computations with CRDTs. In Pro-
ceedings of the First Workshop on Principles and Practice of Consistency
for Distributed Data. ACM, 7.

[57] Adrian Mizzi, Joshua Ellul, and Gordon Pace. 2018. D’Artagnan: An
Embedded DSL Framework for Distributed Embedded Systems. In
Proceedings of the Real World Domain Specific Languages Workshop
2018 (RWDSL2018). ACM, New York, NY, USA, Article 2, 9 pages.
https://doi.org/10.1145/3183895.3183899

[58] Sape J Mullender, Guido Van Rossum, AS Tanenbaum, Robbert Van Re-
nesse, and Hans Van Staveren. 1990. Amoeba: A distributed oper-
ating system for the 1990s. Computer 23, 5 (1990), 44–53. https:
//www.cs.cornell.edu/home/rvr/papers/Amoeba1990s.pdf

[59] Derek G. Murray and Steven Hand. 2008. Privilege Separation Made
Easy: Trusting Small Libraries Not Big Processes. In Proceedings of the
1st European Workshop on System Security (EUROSEC ’08). ACM, New
York, NY, USA, 40–46. https://doi.org/10.1145/1355284.1355292

[60] Derek G. Murray, Frank McSherry, Rebecca Isaacs, Michael Isard, Paul
Barham, and Martín Abadi. 2013. Naiad: A Timely Dataflow System.
In Proceedings of the Twenty-Fourth ACM Symposium on Operating
Systems Principles (SOSP ’13). ACM, New York, NY, USA, 439–455.
https://doi.org/10.1145/2517349.2522738

[61] Derek G. Murray, Malte Schwarzkopf, Christopher Smowton, Steven
Smith, Anil Madhavapeddy, and Steven Hand. 2011. CIEL: A Universal
Execution Engine for Distributed Data-flow Computing. In Proceed-
ings of the 8th USENIX Conference on Networked Systems Design and
Implementation (NSDI’11). USENIX Association, Berkeley, CA, USA,
113–126. http://dl.acm.org/citation.cfm?id=1972457.1972470

[62] Sam Newman. 2015. Building Microservices. O’Reilly Media, Inc.
[63] Ryan Newton, Sivan Toledo, Lewis Girod, Hari Balakrishnan, and

Samuel Madden. 2009. Wishbone: Profile-based Partitioning for Sen-
sornet Applications. In Proceedings of the 6th USENIX Symposium on
Networked Systems Design and Implementation (NSDI’09). USENIX As-
sociation, Berkeley, CA, USA, 395–408. http://dl.acm.org/citation.
cfm?id=1558977.1559004

[64] John K Ousterhout, Andrew R. Cherenson, Fred Douglis, Michael N.
Nelson, and Brent B. Welch. 1988. The Sprite network operating

1025

https://www.gutenberg.org/
https://www.usenix.org/conference/hotcloud16/workshop-program/presentation/hendrickson
https://www.usenix.org/conference/hotcloud16/workshop-program/presentation/hendrickson
https://github.com/koajs/examples/tree/master/blog
http://dl.acm.org/citation.cfm?id=296806.296826
http://dl.acm.org/citation.cfm?id=296806.296826
https://doi.org/10.1145/258533.258660
https://doi.org/10.1145/1250734.1250755
https://doi.org/10.1145/3144555.3144562
https://doi.org/10.1145/850657.850658
https://doi.org/10.1145/800216.806603
https://doi.org/10.1145/800213.806531
https://doi.org/10.1145/263699.263719
https://doi.org/10.1145/41457.37514
https://doi.org/10.1145/2872362.2872386
https://www.theregister.co.uk/2012/11/08/twitter_epic_traffic_saved_by_java/
https://www.theregister.co.uk/2012/11/08/twitter_epic_traffic_saved_by_java/
https://doi.org/10.1145/3183895.3183899
https://www.cs.cornell.edu/home/rvr/papers/Amoeba1990s.pdf
https://www.cs.cornell.edu/home/rvr/papers/Amoeba1990s.pdf
https://doi.org/10.1145/1355284.1355292
https://doi.org/10.1145/2517349.2522738
http://dl.acm.org/citation.cfm?id=1972457.1972470
http://dl.acm.org/citation.cfm?id=1558977.1559004
http://dl.acm.org/citation.cfm?id=1558977.1559004

Ignis: Scaling Distribution-Oblivious Systems with Light-Touch Distribution PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

system. Computer 21, 2 (1988), 23–36. http://www.research.ibm.com/
people/f/fdouglis/papers/sprite.pdf

[65] David A Padua, Rudolf Eigenmann, Jay Hoeflinger, Paul Petersen,
Peng Tu, Stephen Weatherford, and Keith Faigin. 1993. Polaris: A
new-generation parallelizing compiler for MPPs. In In CSRD Rept. No.
1306. Univ. of Illinois at Urbana-Champaign.

[66] Jeff H. Perkins, Sunghun Kim, Sam Larsen, Saman Amarasinghe,
Jonathan Bachrach, Michael Carbin, Carlos Pacheco, Frank Sher-
wood, Stelios Sidiroglou, Greg Sullivan, Weng-Fai Wong, Yoav Zibin,
Michael D. Ernst, and Martin Rinard. 2009. Automatically Patching
Errors in Deployed Software. In Proceedings of the ACM SIGOPS 22Nd
Symposium on Operating Systems Principles (SOSP ’09). ACM, New
York, NY, USA, 87–102. https://doi.org/10.1145/1629575.1629585

[67] Rob Pike, Dave Presotto, Ken Thompson, Howard Trickey, et al. 1990.
Plan 9 from Bell Labs. In Proceedings of the summer 1990 UKUUG
Conference. 1–9. http://css.csail.mit.edu/6.824/2014/papers/plan9.pdf

[68] Ariel Rabkin, Matvey Arye, Siddhartha Sen, Vivek S Pai, and Michael J
Freedman. 2014. Aggregation and Degradation in JetStream: Streaming
analytics in the wide area. In 11th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 14). USENIX Association,
275–288.

[69] Richard F Rashid and George G Robertson. 1981. Accent: A com-
munication oriented network operating system kernel. Vol. 15. ACM.
https://cseweb.ucsd.edu/classes/wi08/cse221/papers/rashid81.pdf

[70] Martin Rinard, Cristian Cadar, Daniel Dumitran, Daniel M. Roy, Tudor
Leu, and William S. Beebee, Jr. 2004. Enhancing Server Availability
and Security Through Failure-oblivious Computing. In Proceedings
of the 6th Conference on Symposium on Opearting Systems Design &
Implementation - Volume 6 (OSDI’04). USENIX Association, Berkeley,
CA, USA, 21–21. http://dl.acm.org/citation.cfm?id=1251254.1251275

[71] Luigi Rizzo. 2012. Netmap: a novel framework for fast packet I/O. In
21st USENIX Security Symposium (USENIX Security 12). 101–112.

[72] Marc Rozier, Vadim Abrossimov, François Armand, Ivan Boule, Michel
Gien, Marc Guillemont, Frédéric Herrmann, Claude Kaiser, Sylvain
Langlois, Pierre Léonard, et al. 1991. Overview of the chorus distributed
operating systems. In Computing Systems.

[73] Jan Sacha, Henning Schild, Jeff Napper, Noah Evans, and Sape
Mullender. 2013. Message passing and scheduling in Osprey.
(2013). http://sfma13.cs.washington.edu/wp-content/uploads/2013/
04/sfma2013-final6.pdf

[74] Mahadev Satyanarayanan, Paramvir Bahl, Ramón Caceres, and Nigel
Davies. 2009. The case for vm-based cloudlets in mobile computing.
IEEE pervasive Computing 8, 4 (2009).

[75] Karla Saur, Michael Hicks, and Jeffrey S. Foster. 2016. C-strider: Type-
aware Heap Traversal for C. Softw. Pract. Exper. 46, 6 (June 2016),
767–788. https://doi.org/10.1002/spe.2332

[76] Malte Schwarzkopf, Matthew P Grosvenor, and Steven Hand. 2013.
New wine in old skins: the case for distributed operating systems
in the data center. In Proceedings of the 4th Asia-Pacific Workshop
on Systems. ACM, 9. http://www.cl.cam.ac.uk/~ms705/pub/papers/
2013-apsys-dios.pdf

[77] Peter Sewell, James J. Leifer, Keith Wansbrough, Francesco Zappa
Nardelli, Mair Allen-Williams, Pierre Habouzit, and Viktor Vafeiadis.
2005. Acute: High-level Programming Language Design for Distributed
Computation. In Proceedings of the Tenth ACM SIGPLAN International
Conference on Functional Programming (ICFP ’05). ACM, New York,
NY, USA, 15–26. https://doi.org/10.1145/1086365.1086370

[78] Stelios Sidiroglou, Oren Laadan, Carlos Perez, Nicolas Viennot, Jason
Nieh, and Angelos D. Keromytis. 2009. ASSURE: Automatic Software
Self-healing Using Rescue Points. In Proceedings of the 14th Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS XIV). ACM, New York, NY, USA, 37–48.
https://doi.org/10.1145/1508244.1508250

[79] Stelios Sidiroglou, Michael E. Locasto, StephenW. Boyd, and Angelos D.
Keromytis. 2005. Building a Reactive Immune System for Software
Services. In Proceedings of the Annual Conference on USENIX Annual
Technical Conference (ATEC ’05). USENIX Association, Berkeley, CA,
USA, 11–11. http://dl.acm.org/citation.cfm?id=1247360.1247371

[80] Joel Spolsky. 2000. Things You Should Never Do, Part I. https:
//tinyurl.com/j5ml4gg Accessed: 2017-12-11.

[81] Gerald Jay Sussman and Guy L. Steele, Jr. 1998. The First Report on
Scheme Revisited. Higher Order Symbol. Comput. 11, 4 (Dec. 1998),
399–404. https://doi.org/10.1023/A:1010079421970

[82] D. G. Thaler and C. V. Ravishankar. 1998. Using name-based mappings
to increase hit rates. IEEE/ACM Transactions on Networking 6, 1 (Feb
1998), 1–14. https://doi.org/10.1109/90.663936

[83] The gRPC Authors. 2018. gRPC. https://grpc.io/ Accessed: 2019-04-16.
[84] Stylianos Tsampas, Akram El-Korashy, Marco Patrignani, Dominique

Devriese, Deepak Garg, and Frank Piessens. 2017. Towards automatic
compartmentalization of C programs on capability machines. InWork-
shop on Foundations of Computer Security 2017 (FCS’17). 1–14.

[85] Nikos Vasilakis, Ben Karel, Nick Roessler, Nathan Dautenhahn, André
DeHon, and Jonathan M. Smith. 2017. Towards Fine-grained, Auto-
mated Application Compartmentalization. In Proceedings of the 9th
Workshop on Programming Languages and Operating Systems (PLOS’17).
ACM, New York, NY, USA, 43–50. https://doi.org/10.1145/3144555.
3144563

[86] Nikos Vasilakis, Ben Karel, Nick Roessler, Nathan Dautenhahn, André
DeHon, and Jonathan M. Smith. 2018. BreakApp: Automated, Flexi-
ble Application Compartmentalization. In Networked and Distributed
Systems Security (NDSS’18). https://doi.org/10.14722/ndss.2018.23131

[87] Nikos Vasilakis, Ben Karel, and Jonathan M. Smith. 2015. From
Lone Dwarfs to Giant Superclusters: Rethinking Operating Sys-
tem Abstractions for the Cloud. In 15th Workshop on Hot Topics in
Operating Systems (HotOS XV). USENIX Association, Kartause It-
tingen, Switzerland. https://www.usenix.org/conference/hotos15/
workshop-program/presentation/vasilakis

[88] Robert Virding, Claes Wikström, and Mike Williams. 1996. Concurrent
Programming in ERLANG (2Nd Ed.). Prentice Hall International (UK)
Ltd., Hertfordshire, UK, UK.

[89] Bruce Walker, Gerald Popek, Robert English, Charles Kline, and Greg
Thiel. 1983. The LOCUS distributed operating system. In ACM SIGOPS
Operating Systems Review, Vol. 17. ACM, 49–70.

[90] Xiaojuan Wei, Shangguang Wang, Ao Zhou, Jinliang Xu, Sen Su,
Sathish Kumar, and Fangchun Yang. 2017. MVR: An Architecture
for Computation Offloading in Mobile Edge Computing. In Edge Com-
puting (EDGE), 2017 IEEE International Conference on. IEEE, 232–235.

[91] Cliff Young, Yagati N Lakshman, Tom Szymanski, John Reppy, David
Presotto, Rob Pike, Girija Narlikar, Sape Mullender, and Eric Grosse.
2001. Protium, an infrastructure for partitioned applications. In Hot
Topics in Operating Systems, 2001. Proceedings of the Eighth Workshop
on. IEEE, 47–52.

[92] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave,
Justin Ma, Murphy McCauley, Michael J. Franklin, Scott Shenker, and
Ion Stoica. 2012. Resilient Distributed Datasets: A Fault-tolerant
Abstraction for In-memory Cluster Computing. In Proceedings of
the 9th USENIX Conference on Networked Systems Design and Imple-
mentation (NSDI’12). USENIX Association, Berkeley, CA, USA, 2–2.
http://dl.acm.org/citation.cfm?id=2228298.2228301

[93] Jamie Zawinski. 1999. Resignation and Postmortem. https://www.
jwz.org/gruntle/nomo.html Accessed: 2018-02-12.

[94] John N Zigman, Ramesh Sankaranarayana, et al. 2002. dJVM-A dis-
tributed JVM on a Cluster. (2002).

1026

http://www.research.ibm.com/people/f/fdouglis/papers/sprite.pdf
http://www.research.ibm.com/people/f/fdouglis/papers/sprite.pdf
https://doi.org/10.1145/1629575.1629585
http://css.csail.mit.edu/6.824/2014/papers/plan9.pdf
https://cseweb.ucsd.edu/classes/wi08/cse221/papers/rashid81.pdf
http://dl.acm.org/citation.cfm?id=1251254.1251275
http://sfma13.cs.washington.edu/wp-content/uploads/2013/04/sfma2013-final6.pdf
http://sfma13.cs.washington.edu/wp-content/uploads/2013/04/sfma2013-final6.pdf
https://doi.org/10.1002/spe.2332
http://www.cl.cam.ac.uk/~ms705/pub/papers/2013-apsys-dios.pdf
http://www.cl.cam.ac.uk/~ms705/pub/papers/2013-apsys-dios.pdf
https://doi.org/10.1145/1086365.1086370
https://doi.org/10.1145/1508244.1508250
http://dl.acm.org/citation.cfm?id=1247360.1247371
https://tinyurl.com/j5ml4gg
https://tinyurl.com/j5ml4gg
https://doi.org/10.1023/A:1010079421970
https://doi.org/10.1109/90.663936
https://grpc.io/
https://doi.org/10.1145/3144555.3144563
https://doi.org/10.1145/3144555.3144563
https://doi.org/10.14722/ndss.2018.23131
https://www.usenix.org/conference/hotos15/workshop-program/presentation/vasilakis
https://www.usenix.org/conference/hotos15/workshop-program/presentation/vasilakis
http://dl.acm.org/citation.cfm?id=2228298.2228301
https://www.jwz.org/gruntle/nomo.html
https://www.jwz.org/gruntle/nomo.html

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Case Study: A Wiki Engine
	2.2 Light-touch Distribution with Ignis
	2.3 Ignis-powered Wiki Engine
	2.4 Simplifying Trends

	3 System Overview
	3.1 Transformations vs. Recipes
	3.2 Structure of Transformations

	4 Decision-Making
	4.1 Profile Generation
	4.2 Application-wide Coordination

	5 Distributing Modules
	5.1 Scaling Out
	5.2 Maintaining (the Illusion of) a Single Runtime

	6 Distribution Recipes
	7 Implementation
	8 Evaluation
	8.1 Microbenchmarks
	8.2 Synthetic Applications
	8.3 Macrobenchmark: A (very) Simple Weblog
	8.4 Macrobenchmark: Document Ranking
	8.5 Macrobenchmark: Wiki Engine

	9 Related Work
	10 Discussion
	11 Conclusion
	References

