Executing Shell Scripts in the Wrong Order, Correctly
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ABSTRACT

Shell scripts are critical infrastructure, for developers, ad-
ministrators, and scientists, and therefore deserve the full
suite of advances in compiler optimizations. We propose ex-
ecuting scripts out-of-order to better utilize the underlying
computational resources. Optimizing any part of an arbitrary
shell script is very challenging: the shell language’s complex,
late-bound semantics makes extensive use of opaque ex-
ternal commands. We address these challenges by meeting
dynamism with dynamism: we optimize at runtime, specu-
latively executing commands in an isolated and monitored
environment to determine and contain their behavior. Our
proposed approach can yield serious performance benefits
(up to 3.9x% for a bioinformatics script on a 16-core machine)
for arbitrarily complex scripts without modifying their be-
havior. Contained out-of-order execution obviates the need
for command specifications, operates on external commands,
and yields a much more general framework for the shell.

1 INTRODUCTION

Shell programming remains prevalent in today’s computing
landscape. GitHub steadily rank the shell among the top
10 programming languages for the past decade, and with
increasing popularity [11]: in 2020 it jumped to eighth—
growing faster than languages such as C and Ruby—and
in 2021 it ranked sixth in terms of popularity increase—
above languages with highly active communities, such as
Python and Kotlin. These return-to-the-shell trends in indus-
try are mirrored by a resurgence of academic research on
the shell [4, 7, 8, 10, 13, 15, 18-21, 23].

Despite its popularity, shell tooling has not kept up: weak
linters, no debugging, and—our focus—no compilation or
optimization. Even though the shell’s performance is not
what it could be, the shell remains convenient for many
long running tasks—e.g., builds, orchestration, continuous
integration, and data-processing. The lack of support is not
surprising, though: the shell is a glue language, piecing to-
gether a polyglot patchwork of individual commands in one
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of the most dynamic, latest-bound languages in common
use—optimization is quite a challenge!

We identify dynamic interposition, tracing, and contain-
ment as key ingredients for this kind of optimization support,
together enabling a powerful and important optimization to
the shell: out-of-order program execution [2]. A program’s exe-
cution order need not be determined by syntax, i.e., the order
in which blocks or instructions are located in the program,
but rather by semantics, i.e., dependencies between different
blocks or instructions. It is only safe to rearrange a program
in ways that respect these dependencies; to be worthwhile, a
rearrangement must also (1) accelerate execution e.g., by ex-
ecuting fragments for which input data is already available,
and (2) better utilize the underlying resources available to
the program. Combined, these ingredients provide another
advantage over prior work [13, 19, 23] on the shell: we can
appropriately trace, contain, and selectively merge a com-
mand’s effects without any foreknowledge of the command—
that is, without need for command annotations!

We explain our proposal with a concrete instance of a com-
mon disorder of shell scripts: overly sequential execution.

A patient: Let us consider the core of a real bioinformatics
script for mapping sequence reads to a reference genome
(Fig. 1), a typical task in e.g., cancer genomics [17]. The script
first (a) indexes the reference genome; it then (b) aligns each
set of samples based on the genome, (c) combines the results,
(d) removes duplicates, and (e) plots a coverage histogram.
Running this script for a 152-MB reference genome and 3.3-
GB input samples takes about 30 minutes on a 3GHz 16-core
machine on Cloudlab [5]. The script invokes a variety of
commands: specialized genomics executables (bwa, samtools),
core utilities (cut) and custom scripts in interpreted lan-
guages (python plot.py). Several of those invocations are
completely independent, and could be safely executed in any
order. Every command depends on the initial indexing (a),
but each big loop iteration is independent of the others and
each group’s alignment can be done independently. Sadly, the



1 SAMPLES="100 101 102 103"

2 REF="hgl9.fa"

3 GROUPS="1 2"

4 # (a) Index

5  bwa index "$REF"

6 for sm in $SAMPLES

7 do

8 # (b) Align sample

9 for gr in $GROUPS

10 do

11 bwa aln "$REF" "$sm.$gr.fastq" > "$sm.$gr.sai"
12 done

13 # (c) Combine sample pairs

14 bwa sampe "$sm.1.sai" "$sm.2.sai" |

15 samtools view -Shu - > "$sm.bam"

16 # (d) Remove polymerase chain reaction-induced dups
17 samtools rmdup "$sm.bam" "$sm.nodup.bam"

18 # (e) Plot coverage histogram

19 samtools mpileup "$sm.nodup.bam"

20 cut -f4 | python plot.py "$sm.coverage.pdf"
21 # Delete temporary files

22 rm -f "$sm.1.sai" "$sm.2.sai"

23 done

Figure 1: A bioinformatics script slightly adapted from
Koster and Rahmann [14] that maps sequence reads to
areference genome.

execution order of these invocations on any modern shell in-
terpreter will depend entirely on the script’s syntax—i.e., the
order in which the developer wrote the commands—leaving
significant opportunities for optimization unexploited.

A treatment: We will optimize shell scripts by reordering
and interleaving their commands, letting the semantic de-
pendencies guide execution instead of syntactic ordering.
We will execute independent commands out of order and
in parallel, enforcing order only between commands that
depend on each other (true dependencies).

Easier said than done! Decoupling execution order and
syntax order poses daunting challenges. First, the shell is hos-
tile to analysis, so it is hard to predict which commands will
run at all, never mind their order: commands are interleaved
with complex and highly dynamic control flow—e.g., if state-
ments, command substitution, and parameters determined
by previous commands. This is in contrast to traditional
compiler optimizations working on object code, simply see
instruction sequences, with occasional control flow. Second,
an invoked command’s semantics is coarse, complex, and
unbounded—if not completely opaque. It is impossible to
statically determine their interdependencies. This, again, is
in contrast to the finite and well-defined set of instructions
in object code, with generally clear dependencies and effects.
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Figure 2: A high-level overview of a speculative out-of-
order shell-script executor.

A prescription: While compiler reordering optimizations
are traditionally static and pessimistic, our approach for the
shell is—must be—dynamic and opportunistic. A dynamic
approach circumvents the intractability of ahead-of-time or-
der extraction: our proposed techniques extract information
about the execution order incrementally, building a gradual
understanding of this order during the execution of the script.
An opportunistic approach avoids the need for a full under-
standing of command behavior: our techniques can optimisti-
cally execute commands in an isolated environment—dealing
with conflicting side-effects as they later arise.!

Our approach has three parts (Fig. 2): a script prepro-
cessor, a scheduler, and a tracing executor. The preproces-
sor translates a script into a partial order on commands or,
rather, lines of shell script. It hands this partial order off to be
scheduled and executed speculatively: the scheduler executes
commands opportunistically out-of-order and takes care of
rolling back only when dependencies have been violated.
It uses (1) tracing to discover command dependencies and
detect dependency violations, and (2) containment to shielf
against interference and allow rollbacks. The tracing execu-
tor looks at the preprocessed version of the original script
and communicates with the scheduler; its job is to hide out-
of-order execution so that our reorderings are semantically
transparent, i.e.,, the script runs the same.

A relief of symptoms: On a 3GHz 16-core machine on
Cloudlab [5], the syntax-guided execution order executes
the script in about 30 minutes; the speculative out-of-order
execution guided by its semantics completes in 7 minutes
and 35 seconds (3.9% speedup).

2 THE TREATMENT, APPLIED

We now apply our approach on the script in Fig. 1, in the
process sketching the design of an out-of-order shell script

IWe say ‘opportunistic’ rather than ‘optimistic’, as our optimism is modu-
lated: we will only speculate commands which we can see have some hope
of succeeding.
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Figure 3: Step-by-step orchestration of a simplified version of the example in Fig. 1.

executor (see Fig. 2). Our proposed executor combines pre-
processing, tracing, speculation, and containment.

Preprocessing: First, the shell script is sent through a
preprocessor that extracts all commands in the script. The
preprocessor is the only syntax-driven component of our
approach, parsing the shell script and replacing all command
nodes in the abstract syntax tree (AST) with stubs that will
interact with a tracing executor when executed at runtime.
These command nodes are then added to an execution set
that stores all the commands that need to be executed and is
provided to a scheduler. The execution set also encodes the
syntactic program order, i.e., the order in which commands
were originally (syntactically) written. This is a partial (rather
than total) order, as some commands are not syntactically
ordered—e.g., two different branches of an if statement.

For the script in Fig. 1, lines 5, 11, 14-15, 17, and 19-20
would all be replaced with stubs, and their commands would
be added to the execution set. A subset of the execution set is
shown in Fig. 3. After preprocessing, commands in the execu-
tion set may contain all sorts of unresolved fragments—e.g.,
unexpanded strings, unresolved variables, and unevaluated
command substitutions—similar to $REF (line 11). These are
script fragments that cannot be evaluated statically, as they
might change during the execution of the script.

Tracing executor: The tracing executor executes the pre-
processed script containing the stubs: it blocks whenever it
reaches a stub and waits until the scheduler has completed
the execution of the particular command, to receive its exit
status and observe its effects on the file-system. It also keeps
track of extra-command dependencies—e.g., standard vari-
able assignment, special variables (e.g., $?), shell state re-
configurations (e.g., set -e)—and propagates these to the
scheduler. In Fig. 1’s script, the executor propagates assign-
ments to variables such as REF, sm, and gr to the scheduler;
other commands in the execution set observe the latest state.

Scheduler: The scheduler is responsible for running com-
mands in the execution set in the program (partial) order.

Commands can be in one of four states: (NE) not executed,
(S) speculated, (C) committed taken, and (CN) committed not
taken. An invariant of the execution set is that committed
commands form a closed prefix: if a command has committed
all its previous commands have committed too.

Fig. 4 shows the possible transitions a command can take
depending on its state. At each step, the scheduler takes
the first (NE) command with respect to the partial order
and executes it while tracing the files that it reads from and
writes to; the tracing executor can provide the latest relevant
environment updates (such as variable assignments) to run
it correctly. The scheduler speculatively executes a number
of upcoming commands, assuming that the state of the shell
environment and the file system will not change until their
actual execution. To speculatively execute commands, the
scheduler must be able to decide whether to merge their
changes or roll them back—and to achieve this, it execute
commands in a virtualized environment (see later).

Once the first command finishes executing, it is marked as
(C) committed. Its results are passed to the tracing executor,
and its write-set—i.e., the files that it wrote to—is kept to
check for any dependencies with the read- and write-sets
of speculated commands. The read-set of each speculated
command is checked against the write-set of all non com-
mitted commands that precede it in the partial order. For
example, for the fifth command samtools rmdup of Fig. 3’s
second step, the executor checks the write-sets of both invo-
cations of bwa aln and the invocation of bwa sampe. If there is
no dependency (the read-set of the command is independent
from all write-set of preceding commands), the command is
marked as (S) speculated; alternatively it is marked as non
executed (NE), which means that it will be considered for
execution in the next cycle.

If the first command is speculated (S), then instead of
executing it, the executor makes sure that its speculation is
valid—i.e., that no extra-command dependency changes were
observed after its speculation. In this case, its changes are
committed to the file system, marking the command with
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Figure 4: Transition system for command state in the
scheduling algorithm.

(C). I a command that was speculated does not end up being
executed (a branch that was not taken) it is marked as (CN)
to preserve the committed prefix invariant.

Tracing: In order to discover the read- and write-sets of
executed commands, we propose tracing their file-accessing
system calls. Whenever a command performs a read (or write)
call, the tracer stores the file in the command’s read (or
write) set. Optimizations seem possible: tracing only relevant
system calls, and intercepting calls to frequently used libc
wrappers such as open to avoid ptrace overhead.

Virtualization: Our approach requires that the scheduler
can control whether (and when) to apply the effects of spec-
ulatively executed commands, making them persist in the
broader operating environment. To achieve this, the sched-
uler leverages a combination of custom namespaces [1],
chroot, and OverlayFS [3]. This combination allows execut-
ing commands speculatively in a restricted environment that
isolates side-effects between executions.

We use unshare to create new namespaces for specula-
tively executing commands, disallowing any types of side
effects—e.g., accessing the network or sending signals—except
from writing to a file or reading from a file in the file system.
We use OverlayFS to capture modifications to the underlying
system to a separate copy for each speculated command,
deciding later whether we will merge this copy to the base
file system. OverlayFS provides a layered representation of
the filesystem, allowing operation on one workspace copy
while keeping another copy clean. In its simplest form, Over-
layFS is organized in three different layers: lower, upper,
and merged. The lower layer contains the filesystem that
is shared as-is, along with every different overlay merged
instance. The upper layer, unique to each instance, contains
every change introduced in the merged layer by a specific
instance. Files are lazily copied from the lower to the upper
layer when a command attempts to modify one of them.

filel [ [file2 | [file3 | JMerged
the merged layer can only ac- wUPPCF

cess the instance of the upper ~ [([filel[[filea]  JLower
layer, concealing the lower layer—e.g., if file1 and file2 pre-
exist, running echo "foo" > file2 and echo "foo" > file3

If a file exists in both layers,

results in the merged layer shown on the right. Committing
a speculated command copies the contents of the upper layer
to the base file system, overwriting files when necessary.
Finding a dependency results in discarding the upper layer
of the speculated command and a new OverlayFS.

Finally, we use chroot to change the root of the speculated
command so that it considers the merged directory of Over-
layFS as its root. We also capture the stdout/err of speculated
commands and release it once they become committed.

Fail-fast speculative execution: Executing commands
using the speculation and containment techniques outlined
earlier avoids affecting the environment with arbitrary side
effects. But some effects are necessary for a command to
execute successfully. For example, a speculated (and thus
contained) curl instance would return a failed response, as
the read operation over the network would be contained—
no actual network communication would be taking place.
Therefore, we should be able to determine that a command
attempted to perform an effect that failed, and thus that its
speculative execution is invalid and should be terminated.

To address this, we propose runtime interception when
such side effects happen (e.g., signals, network accesses).
This interception then (1) kills the speculated command,
tearing down relevant containment setup and reclaiming its
computational resources, and (2) informs the scheduler to not
speculate this command again, since its success depends on
non-virtualizable side-effects. The command is then marked
to avoid re-speculating it in the future.

Worst-case performance: A critical requirement for any
out-of-order execution optimization is that its worst-case
performance does not significantly diverge from the original
straighline syntactic-order execution. The worst-case perfor-
mance in our setting corresponds to all speculations having
failed, always discovering dependencies and discarding their
results. The scheduler design satisfies this requirement since
in each cycle the first non-committed command (the frontier)
is executed normally, i.e., with minimal tracing and without
virtualization: even if all speculation fails, the execution time
will correspond to the baseline execution time with the mini-
mal overhead (from tracing and the communication between
the executor and scheduler). For Fig. 1’s script, failing all
speculation hypothetically (i.e., it does not happen) would
result in 38 minutes (26% slowdown).

Limitations: The approach outlined above assumes that
commands are not malicious—and thus the speculation and
virtualization support are not intended to provide isolation
against security threats present in these commands. Addition-
ally, it assumes that commands do not change their behavior
based on their relative execution times or absolute PIDs—as
these values will not be the same as in the original execu-
tions for speculated commands. For example, if a command



accesses the PID of the previously executed command with
$!, our speculation engine will fail to provide the right value.

3 DISCUSSION

We have proposed concrete tooling to improve shell script
performance—out-of-order speculative execution. But our
work is also foundation on which to build.

Optimal scheduling and performance tradeoffs: Out-
of-order speculative execution trades CPU utilization to im-
prove latency; speculating more commands means lower
latency but also more CPU cycles through failed specula-
tions. Any fixed choice of tradeoff will be wrong some of
the time. We have not explored this tradeoff adequately; it
would be interesting to investigate a configurable and grad-
ual scheduling algorithm that makes bets commensurate
with its budget: at low system load, make bigger bets and
speculate further out; at high load, make more conservative
bets and speculate less—or not at all.

Harnessing heterogeneous resources: Our simple sched-
uler speculatively executes all of a script’s commands on the
same machine, betting that it has unutilized computational
resources (e.g., additional cores) that could be used to speed
up the computation. To ensure correct execution, speculated
commands are already virtualized and isolated from the main
execution environment. With our commands so neatly con-
tained... why stay on the same machine? We could run com-
mands in a variety of ‘modern’ environments: serverless
functions, cloud compute, a distributed cluster. Keeping the
local and remote compute synchronized demands a hybrid
file system synchronization mechanism, part eager part lazy,
to make sure that changes to file system state are efficiently
exchanged between the speculated and main environment.
Some relevant files could be transferred up front (e.g., bi-
naries) while the rest could be lazily transferred when a
command tries to read or write them.

More shell optimization: Given the feasibility of our com-
mand scheduling and out-of-order execution and the past
success of parallelization and distribution... what other op-
timizations can we apply to the shell? One possibility is
analogue to function inlining: fuse commands to reduce re-
dundant parsing/unparsing communication overheads be-
tween them, enabling whole program optimizations across
different commands. Such an approach might be particularly
effective on multi-call binaries, like busybox. The space of
compiler optimizations is vast, and we suspect that our work
could help support them.

Script maintainability and debuggability: The succinct-
ness of shell scripts facilitates quick prototyping and experi-
mentation, but makes it hard to maintain scripts for longer
periods of time. Our proposed approach records all the details

of a script: execution information, dependencies between
commands—everything. Given such detailed information, we
could rewrite the input script to expose the true command de-
pendencies. The rewritten script would be significantly more
maintainable and would facilitate debugging, since explicit
dependencies provide documentation and can be used by the
developer to localize an error. At the same time, the rewrit-
ten script should better utilize the underlying resources with
no overhead from speculation, tracing, or virtualization. Or,
rather than yielding a script, we could produce a Makefile
or some other explicit representation of dependencies.

Virtualization as a primitive: We use containment and
virtualization to optimize the execution of compositions of
arbitrary black-box commands that could perform any side-
effect on their surrounding system; instead of knowing what
a command does a priori, we simply run it and observe what
it did. Easy and frictionless virtualization could have many
other uses for developers—it ought to be a primitive in their
toolkit. We envision a higher-order command—call it try—
where try cmd contains cmd and records its effect, letting
users decide whether to merge its effects onto the underly-
ing system. A motivating example: virtualize complex and
potentially risky third-party scripts before committing their
results. In contrast to today’s containerization systems like
Docker [16], which set up a different environment making it
hard to merge changes to the underlying system, try would
virtualize the existing system.

4 RELATED WORK

Automated parallelization for shell scripts: Recent
work on shell-script parallelization and distribution [13, 19,
23] has delivered significant performance benefits by exploit-
ing light (but non-zero) command specifications. Contrary
to these approaches, our approach does not require a pri-
ori command specifications—instead it infers the necessary
command-execution information at runtime.

Explicit dependency encoding: Several workflow sys-
tems [6, 12, 14, 22] allow expressing program dependency
graphs, by manually encoding all input and output depen-
dencies of each program step. Such ahead-of-time and static
encoding achieves improved program scheduling, but (1) re-
quires users to painstakingly provide all dependencies, and
(2) cannot express the high dynamism prevalent in shell
scripts. The approach described in this paper alleviates both
of these challenges.

Resurgence of shell research: Broader recent work on the
shell [4, 7-10, 13, 15, 18-21, 23] highlights renewed interest
on and around the shell. We view our work as building on
and extending this work: not only can we expand the reach



and range of optimizations for the shell, but we can extract
reusable tools and techniques for others.

5 CONCLUSION

Modern programming languages come with state-of-the-art
compilation and optimization machinery readily available
to everyday developers. Despite its prominence, the shell is
lacking such infrastructure—partly due to many of its un-
usual characteristics, and partly due to historical coincidence.
As a result, we are missing opportunities to leverage and
investigate promising optimizations for the shell but also op-
portunities to extract reusable tools and techniques beyond
these optimizations. In-progress tackling of out-of-order ex-
ecution in a new system is a first step towards this direction.
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