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Supply-Chain Vulnerability Elimination
via Active Learning & Regeneration

Anonymous Author(s)

ABSTRACT

Software supply-chain attacks target components that are inte-

grated into client applications. Such attacks often target widely-

used components, with the attack taking place via operations such

as file system and network accesses that do not affect the values

that the component returns to the client and therefore preserve the

client-observable behavior. We propose new active library learning

and regeneration (ALR) techniques for inferring and regenerating

the client-observable functionality of software components. Using

increasingly sophisticated rounds of exploration, ALR generates

inputs, provides these inputs to the component, and observes the

resulting outputs to infer a model of the component’s behavior as

a program in a domain-specific language. We present Harp, an

ALR system for string processing components. We apply Harp to

successfully infer and regenerate string-processing components

written in JavaScript and C/C++. Our results indicate that, in the

majority of cases, Harp completes the regeneration in less than a

minute, remains fully compatible with the original library, and de-

livers performance indistinguishable from the original library. We

also demonstrate that Harp can eliminate vulnerabilities associated

with libraries targeted in several highly visible security incidents,

specifically event-stream, left-pad, and string-compare.

1 INTRODUCTION

Malicious adversaries increasingly employ software supply-chain

attacks [7, 27–29, 58]. Rather than directly targeting a victim soft-

ware, these attacks target a victim’s supplier, exploiting the fact

that the victim software depends, directly or indirectly, on software

provided by the supplier. A common scenario is that the attacker

purposefully inserts vulnerabilities into open source software com-

ponents that are then integrated into the eventual victim software.

Modern software often integrates hundreds to thousands of small

components, with many components integrated not directly, but

only via transitive dependencies [27, 39, 70]. It is therefore impracti-

cal for developers to audit the code that implements the integrated

components—indeed, developers can easily be completely unaware

of the full range of components that their system may integrate.

For these reasons, even very simple, widely used components can

successfully carry vulnerabilities into client software systems.

For a compromised component to remain undetected, it must

typically deliver correct observable behavior to its client applica-

tions. Inserted vulnerabilities are therefore typically triggered only

in very specific execution contexts and exhibit malicious behav-

ior (such as stealthily exfiltrating sensitive data [5, 41] , stealing

digital assets [42, 69], or performing covert computations on the

client computing platform [11, 59]) that does not interfere with

correct client-observable behavior. A common scenario is that the

client observes only the functional behavior of the component, i.e.,

the results that it returns to the client when invoked, and not any
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Fig. 1: Harp usage scenario. A stealthy supply-chain vulnerability can

be activated long after deployment. Harp can be applied before or dur-

ing development (shown) to obtain a collection of safe regenerated string

libraries. Harp can also be deployed at later stages (during development

or even while in production, not shown) to replace potentially malicious

libraries with safe regenerated versions.

malicious side effects, additional computation, or external commu-

nication that the component may perform when it executes.

Motivated by this observation, we investigate a new approach to

eliminating vulnerabilities in software components. This approach

takes a potentially compromised component, explores the behavior

of the component in a controlled environment to learn a model of

its functional behavior (this model excludes behavior characteristic

of inserted vulnerabilities), then uses the model to regenerate a new

version of the component. In this paper we present a system, Harp,

that applies this approach to automatically regenerate vulnerability-

free versions of widely used string libraries, including libraries that

operate on collections (such as lists or streams) over strings and

higher-order computations that map or fold over such collections.

Deployment Scenarios: Harp supports a range of deployment

scenarios. It can be used before application development starts

to obtain a collection of safe regenerated string libraries that can

be integrated into multiple applications developed by one or more

organizations (Figure 1). It can also be deployed during development

as new string libraries are integrated into the application. Finally,

it can be deployed after the application is in production to replace

potentially malicious libraries with safe regenerated versions.

Scope and Limitations: Our approach targets simple libraries

that implement familiar utility computations with broad applicabil-

ity across a wide range of applications. Such libraries comprise a

compelling target for attackers because (1) they enable attackers

to effectively target a broad range of computations and (2) they

are often imported indirectly via higher-level libraries (as opposed

to imported directly by the application developer), and as a result

are not inspected by the application’s nominal developers. Many

developers may easily be unaware that their applications integrate

the target library.

Our approach also targets libraries whose behavior can be accu-

rately captured with a domain-specific language (DSL). The DSL

promotes effective inference and representation of the library be-

havior and eliminates malicious computations as inexpressible.

Our current Harp implementation targets string libraries. Such

libraries implement foundational baseline functionality used widely

in modern software systems. This is especially true for dynami-

cally typed language such as JavaScript that use runtime string

1
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manipulation even for basic operations that in other languages

are performed via type-safe alternatives such as type-constructor

pattern matching. This is also true for many web applications,

in which strings and string manipulations play a prominent role.

Strings are therefore integrated, often indirectly, in the full range of

JavaScript applications and are typically treated as standard compo-

nents within the JavaScript ecosystem. We have developed a DSL

that effectively captures the semantics of string computations and

supports the efficient representation, manipulation, and inference

of the underlying behavior implemented by string libraries (§4.1).

Our experimental results highlight the benefits that our approach

can deliver for clients of such libraries (§7).

This focused approach comes with limitations. First, it works

best for widely used libraries whose computations can be captured

with an efficiently inferrable DSL. We anticipate that such libraries

will implement relatively simple, well understood computations.

We also anticipate that the approach will work best for functional

computations. Although it is possible to work with computations

that perform externally visible actions such as file system or net-

work accesses, we anticipate that it may be more difficult to ensure

that the regenerated computations contain no malicious code.

Result Summary: Harp successfully eliminates vulnerabilities

in 3 large-scale supply-chain attacks by learning and regenerating

the core functionality of the vulnerable library, eliminating any

dependency to dangerous code (§7). We are aware of no other

system that can successfully eliminate these attacks.

Applied to 17 JavaScript string-processing libraries (§7.5), Harp

learns 14 libraries within a minute and all 17 under an hour. It also

aborts within 5 seconds on 11 other JavaScript libraries that fall

outside the string-processing domain. Harp also successfully learns

and regenerates 5 C/C++ string processing modules imported as

JavaScript binary modules. The regenerated libraries execute be-

tween 2% faster and 7% slower than the original JavaScript libraries

and cannot use functionality beyond basic JavaScript primitives.

Key properties of Harp’s synthesis algorithm guarantee that, in

the limit, our proposed learning and regeneration techniques pro-

duce candidate programs with the same client-observable behavior

as the original string library, if such a candidate program exists,

and without malicious behaviors that fall outside client-observable

behavior.

Contributions: We make the following contributions:

• Active Learning:Given a component to regenerate, Harp choos-

es inputs, feeds these inputs to the component, and observes

the resulting outputs to infer a model of the client-observable

functionality that the component implements. Harp executes the

component in a controlled environment to discard any behavior

that is not observable in the direct functional interactions with

the Harp learning system.

• Domain-Specific Language: Harp builds the inferred model

as a program in a DSL for capturing string computations, includ-

ing computations over collections of strings and computations

that map or fold over such collections. This approach provides

important benefits: (1) Tractable Learning Without Overfitting:

The DSL acts as a strong regularizer that focuses the inference

on the target class of string computations. It prevents overfit-

ting and promotes efficient inference that typically requires only

automatically generated input-output observations to precisely

identify a specific string computation within the larger class of

string computations. (2) Safe Modeling: The DSL is designed to

express only legitimate string computations. The inferred model

therefore excludes behaviors that augment string computations

with auxiliary malicious computations.

• Regeneration: Given a string computation in the DSL, Harp

regenerates the computation in the desired target programming

language, with anymalicious behavior in the original component

not learned during inference and discarded in the regeneration.

• Experimental Results: It presents results that characterize the

ability of Harp to learn and regenerate a range of string libraries

and highlight its ability to eliminate several software supply

chain attacks that target string libraries.

Paper structure: §2 presents background and an example that

highlights the operation of Harp applied to the event-stream
incident [40, 59]. §3 presents the threat model, §4 presents core

ALR techniques, and §6 presents refinements that improve the

efficiency of the inference and regenerated libraries. §7 presents

the experimental evaluation; §8 presents related work, and §10

concludes.

Appendix B sketches the proofs of Harp’s synthesis properties,

and Appendix C provides additional evaluation results. An online

Appendix contains anonymized accompanying material, which will

be made available upon paper acceptance:

https://anonymous.4open.science/r/harp-anon-734D

2 BACKGROUND & EXAMPLE

Weuse the event-stream incident [40, 59], where a popular stream-

processing library was modified to steal bitcoins from carefully

selected targets, as an example of the attacks Harp is designed

to eliminate. At the time of the incident, event-stream was used
(imported either directly or indirectly) by thousands of applications

and averaged about two million downloads per week. When its

author handed off maintenance to a volunteer—common practice

in open-source development projects—the new maintainer added

an obfuscated, malicious library called flatmap-stream as a de-

pendency to event-stream.
The malicious flatmap-stream library is designed to harvest

account details from select Bitcoin wallets. If run in the dependency

tree of a specific Bitcoin application called Copay, flatmap-stream
loads Copay’s account module containing the Bitcoin wallet cre-

dentials of the user using Copay. It then overwrites the account’s
getKeys method with one that copies and stores the credentials on

the side. It then loads the http module, and posts the credentials
to a remote server, before returning the results to the caller method.

We note that flatmap-stream also maps a function over stream

elements. Because this behavior is desired client-observable behav-

ior, simply removing flatmap-stream breaks the client application.
The attack succeeds by performing effects—loading account, over-
writing getKeys, importing http, and calling post—that do not

interfere with the client-observable behavior. The attack is not de-

tectable by static analysis, because the attacker employed a series

of dynamic encryption passes, nor dynamic analysis because the

2
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Fig. 2: Overview. In an isolated container environment, Harp loads a

library and inspects its interface. Using increasingly sophisticated rounds

of exploration, it generates inputs, provides these inputs to the library, and

observes the resulting outputs to infer a model of the library’s behavior as

a program in a domain-specific language.

malicious code activates selectively far from development and test-

ing: only when event-stream was part of Copay’s dependency

tree, only when run on the “live” bitcoin network, and only on

users that had a balance of 100 bitcoin or more [51]. When run in

any other context, the compromised version of flatmap-stream
exhibits identical behavior as the correct version.

Applying Harp: Harp can directly target a specific dependency

or a library that integrates multiple dependencies. The following

line applies ALR directly to flatmap-stream:

harp -ft js flatmap -stream

Harp first loads flatmap-stream in an isolated container envi-

ronment and applies lightweight program transformations to in-

strument its execution (Fig. 2’s 1○). This instrumentation records

operations such as library imports, file-system reads, and global

variable accesses that flatmap-stream performs. Harp also ex-

tracts information about the library interface ( 2○). This information

includes the number of returned methods and fields and the number

of arguments for each method. Harp then runs flatmap-stream
on synthesized inputs, to extract information about the types of

each argument.

Harp next uses flatmap-stream to synthesize a program in

the Harp DSL as follows. It iteratively generates candidate pro-

grams in the Harp DSL, filtering out candidate programs that do

not match the extracted type information ( 3○). It then executes

the original version of flatmap-stream and remaining candidate

programs on synthesized inputs ( 4○). It observes the parameter and

return values of the original library and the candidate DSL pro-

grams (these parameter and return values are the client-observable

behavior). It filters out candidate programs that exhibit different

client-observable behavior than the original library ( 5○).

In the limit, this process is guaranteed to produce a candidate

program with the same client-observable behavior as the original

library ( 6○), if such a candidate program exists (§5). In practice,

Harp is usually able to synthesize a unique successful candidate

program within an hour and typically within minutes (§7). Harp

also implements a --quick-abort option that immediately aborts

the search if the Harp instrumentation detects any non-client-

observable behavior such as file system, environment variable, or

network access.

In our example, the malicious flatmap-stream behavior is not

triggered in our isolated container environment and flatmap-stream

exhibits fully correct behavior. Working with 2,536 inputs, Harp

takes 1.4 minutes to synthesize the following correct DSL pro-

gram, which exhibits identical behavior as the correct version of

flatmap-stream:

f s = map (squash n) | "{(c)}"

Here fmaps the function squash n over the elements of s, thereby
flattening s, and then pipes each of the results to an output pattern,

which simply outputs its input element.

Harp then compiles the synthesized DSL program to the follow-

ing JavaScript library:

const libHarp = require('./lib -harp.js');

let program = (f, isAsync) => {

const stream = new libHarp.Stream ();

stream.addOperation(libHarp.squash );

stream.addUserOperation(f, isAsync );

return stream;

};

module.exports = program;

The compiled regenerated library is a direct translation of the in-

ferred Harp DSL program. It links to lib-harp, a module that

supports Harp’s core functionality (part of the TCB, §3).

3 THREAT MODEL

Harp protects against an adversary that fully controls a target

component and can modify it in any way that does not affect the

client-observable functionality of the component. By preserving

the client-observable functionality, the adversary aims to execute

undetected attacks when the component is integrated into an ap-

plication. Examples of modifications include added functionality

that reads from the file system, sends messages over the network,

reads environment variables, or writes to global variables.

For ALR to regenerate a successful replacement, the library must

exhibit the desired behavior during testing and this desired behavior

must conform to the ALR DSL. We anticipate that our target class

of software supply-chain vulnerabilities will typically satisfy these

two requirements—their goal is typically to provide the client with

the desired functionality while either (1) stealthily opening up a

vulnerability that can be remotely exploited by carefully crafted

inputs, or (2) silently exfiltrating data or modifying the system on

which it runs. To avoid exploitation during learning, ALR runs the

target library in a controlled isolated environment.

An attacker may also simply remove the library from the ecosys-

tem, disabling any application that depends on the library. By replac-

ing the library with a regenerated local version before the original

library is removed, ALR eliminates the dependence and enables

applications to continue to operate successfully even in the absence

of the original library.

The language’s runtime environment, bindings for locating and

loading libraries, a small compiler offered by Harp and the as-

sociated lib-harp.js runtime-support library are all part of the

trusted computing base (TCB). To capture possible interactions be-

tween libraries, Harp is assumed to be loaded before other libraries.

It is also assumed that other libraries do not cooperate with the

target library to attack the system.

3
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Module m := s |m . s
Statement s := add c l | del l | at l b | repeat n s

| toggle p o | map π | fold b | split σ s σ
Location l := i | /p/
Index i := n | start | end
Predicate p := not p | or p p | and p p | k
Pipeline π := π . π | b | squash n | o
Char. Class c := α | n | σ | regex r | capt k
Output o := o . o | c | ⊥ | b ⊥
Capture k := k . k | p | p ⊥
Built-ins b := + | − | × | % | Math.* | String.*
Regex r := r | α | n | σ | * | +

Special σ ∈ Σ1
Alpha α ∈ Σ2
Num n ∈ N

Fig. 3: Harp’s library DSL. The domain-specific language (DSL) captures

the space of inferable program libraries.

4 ACTIVE LEARNING & REGENERATION

Harp combines three components: a DSL for specifying string-

processing computations (§4.1), an algorithm for inferring com-

putations in the DSL (§4.2), and an input generation component

that produces the inputs for the inference algorithm (§4.3). The

three components work in tandem, aided by lightweight runtime

interposition for mapping the interface of a library (§4.4).

4.1 Domain-specific Language

Fig. 3 presents the Harp DSL. The DSL specifies the set of all

programs that can be constructed by Harp, broken down into

a few broad classes: (1) computational primitives, which apply

transformations on their input, (2) built-in primitives for number

and string manipulation commonly offered by high-level languages,

(3) input ranges, over which these primitives are applied, and (4)

character classes, used for pattern ranges and primitives. More

complex classes often combine less complex ones.

Computational primitives: Computational primitives are either

statements or pipelines. Statements include add and del primitives

for introducing and deleting characters and higher-order map and

fold primitives for applying a first-order primitive over a range.

Pipelines apply a series of operators to a collection of elements in an

input stream—optionally recursively to elements of their elements.

These primitives are Harp’s primary building blocks; their oper-

ational semantics are presented in Fig. 4. The transition function

=⇒ maps a computational primitive within our DSL to its output

value. For example, the primitive add accepts a character c , a lo-
cation l , and a string s , and returns a string that is the result of

adding the character c at location l in s . Strings are encoded as lists

of characters, list concatenation is encoded as ·, and operations

encoded in sans − serif are built into Harp—for example, match
accepts a predicate p and a string s and returns three character lists:
(i) a string s1 up to (but not including) the match, (ii) the matching

string s2, (iii) the rest of the string s3 following s2 in s .
We note that this is only a small set of key operators, which

are augmented by built-in operators, input ranges, and character

classes. Harp’s DSL contains a significant number of operators,

which allow it to capture a large class of functionality required to

implement string-processing functions.

Built-in primitives: This class contains primitives offered com-

monly by the standard libraries of different high-level programming

languages, including operations for arithmetic—e.g., log, sqrt, etc.—
and string manipulation—e.g., toUpper, toAsciiCode. The class of
Built-ins re-implements these operators from scratch to address two

challenges. The first challenge is that different languages offer dif-

ferent operators and under different names; the Harp DSL unifies a

common subset under a common set of identifiers. The second chal-

lenge is that the invocation patterns of such primitives are different

for different languages—for example, JavaScript’s n.toString is

invoked directly on a number n, whereas Python str(n) takes n
directly as an argument. Harp DSL introduces these operators as

functions whose first argument is the input string.

Input ranges: Computational primitives often take as argument

a location within the string. In their simplest form, locations are

indices relative to the start of the input segment, which can be a

string or a substring within that. For example, the index start in
the expression (at start String.toUpper) matches the beginning

of the string.

Locations can also be predicates that pattern-match on the form

of the string. Predicates are formed by the composition of a simpler

set of base predicates. Composition operators include negation,

disjunction, and conjunction. Base predicates are centered around

a simple pattern-matching language that includes characters, num-

bers, “
*
” (Kleene-star superscript), and “

+
” (Kleene-plus superscript).

For example, the predicate /a+/ in at (/a+/) (String.toUpper)
matches one or more a characters.

Character Classes: The DSL includes three sets of characters.

Two of these sets come pre-configured and built into the DSL:

(1) the set of integer numbers, and (2) the set of alphanumerics—

including number characters “0” to “9”, lowercase letters “a” to “z”,
uppercase letters “A” to “Z”, and punctuation symbols. The third

set contains characters that are special to a particular computation.

The members of this set are discovered during the learning phase

via input generation (§4.3).

Capture and output expressions: Two examples of how simple

elements like character classes and built-in primitives are used

to construct more powerful primitives are capture and output
expressions. toggle’s second argument is an output expression,

which can be thought of as a format string that one would pass

into a function like C’s printf, describing the formatting of the

function’s output. It can contain literal characters, as well as special

identifiers, which are bound to strings that were matched as part

of toggle’s first argument, its predicate, and captured using a

capture expression. For instance, whenever toggle encounters any
character preceding an uppercase character in the program:

toggle f'{/./(a)}{/[A-Z]/(b)}' '{(a)}- {

↪→ to_lower (b)}'

it will output the first character it matched—which it assigned to

variable a in the capture expression—followed by a dash, followed

by the captured uppercase character (assigned to b) converted into
lowercase.

4
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l = index 0

add l c s =⇒ [c] · s
Add1

l = index i l ′ = index i − 1
s = [s0] · s1−n s′1−n = add l ′ c s1−n

add l c s =⇒ [s0] · s′1−n
AddI

l = /p/ (s1, s2, s3) = match p s
s′3 = add l c s3

add l c s =⇒ s1 · c · s2 · s′3
AddP

l = index 0

s = [s0] · s1−n

del l c s =⇒ s1−n
Del1

l = index i l ′ = index i − 1
s = [s0] · s1−n s′1−n = del l ′ s1−n

del l s =⇒ [s0] · s′1−n
DelI

l = /p/ (s1, s2, s3) = match p s
s′3 = del l s3

del l s =⇒ s1 · s′3
DelP

(s1, s2, s3) = match p s
s′3 = at l c s3

at l c s =⇒ s1 · c · s′3
At

n , 0 s′ = f s

repeat n f s =⇒ repeat (n − 1) f s′
RepeatN

n = 0 s′ = f s

repeat n f s =⇒ s′
Repeat0

(s1, s2, s3) = match p s

toggle l f s =⇒ s1 · (f s2) · s3
Toggle

s = []

map f s =⇒ []
MapE

s = [s0] · s1−n s′0 = f s0
s′1−n = map f s1−n

map f s =⇒ [s′0] · s
′
1−n

MapF

s = []

fold f r s =⇒ r
FoldE

(s1, [], []) = match /c/ s s′1 = f s1

split c f c′ s =⇒ s′1
SplitS

s = [s0] · s1−n s′1−n = fold f r s1−n s′0 = f s0 s′1−n
fold f r s =⇒ s′0

FoldF

s = []

split c f c′ s =⇒ []
SplitE

(s1, s2, s3) = match /c/ s s′1 = f s1 s
′
3 = split c f c′ s3

split c f c′ s =⇒ s′1 · [c
′] · s′3

SplitM

Fig. 4: DSL Semantics. A subset of Harp’s DSL semantics, describing Harp’s computational primitives.

4.2 Synthesis Algorithm

Alg. 1 outlines Harp’s library synthesis algorithm, which synthe-

sizes a new library L′ for a library L.

Initial configuration: For each function f in L, Alg. 1 synthe-

sizes a function f ′ by exploring the space of programs expressible

in Harp’s DSL. It starts by invoking procedure generateInputs ,
which generates a set of inputs as described in the next section (§4.3)

and stores them in I . The algorithm then invokes getGroundTruth ,
which runs the original function f on the set of inputs I to obtain

a set of outputs O . These outputs are considered ground-truth

outputs, because they are generated by the reference implementa-

tion. For example, applying getGroundTruth to f = length and
I = ["a", "bb", "ccc"] returns O = [1, 2, 3].

Alg. 1 next invokes soundTypeConstraints to collect a set of

sound type information T for the values in O . This procedure in-
cludes several type-inference tests for checking whether the values

inO represent numbers, whether their length is significantly longer

or shorter than the inputs, and whether they contain any special

characters. For example, the result of calling soundTypeConstraints
on a String.length function would return Strinд→ Number .

Navigating the search space: The algorithm then prepares the

search space of candidate regenerated programs, which is paramet-

ric over the maximum number n of terms used in the program—i.e.,

the size of the abstract syntax tree (AST) of each candidate regener-

ated program. Specifically, this space is explored in repeated rounds

of increasing complexity and size of the synthesized program.

For each size n, Alg. 1 first invokes procedure allPrograms to
obtain all possible programs whose AST size is not greater than

n and whose type satisfies the constraints in T . The allPrograms

procedure takes a number n and a set of sound type constraints

T and returns a set Pn containing all of the programs of size n

that satisfy these type constraints. Consider an example where (1)

all programs of AST size 1 are captured by the set of single-term

programs {count, toString, +, -, *}, and (2) the type constraints

include Number→Number→Number. Then P1 = {+, -, *}.
The algorithm then invokes pruneSpace to eliminate candidate

programs in Pn whose input-output behavior does not conform to

(I ,O). This procedure eliminates candidate programs with behavior

that is not identical to f —i.e., programs for which not all inputs

in I produce outputs in O . At times, pruneSpace generates more

input-output examples to further differentiate between candidates

and thus prune the search space even further. It finally returns a set

of candidate programs P , all of which implement f ’s input-output
behavior on the input-output examples.

Finally, Alg. 1 inspects the set P . If P is not empty, it ranks the

candidate programs in P by invoking getOpt , which returns the

highest-performance program (see below).

Other information: The synthesis algorithm maintains some

additional information on the side (not shown in Alg. 1). First, the

synthesis algorithm is configured to run up to a time limit—either

a limit tf̄ per function f in L or a limit tL for L overall. If only tf̄
has been specified, then tL is calculated as tf̄ × | f1−n | spread fairly

across all functions f1−n in L; when Harp timeouts for one of the

methods, it simply outputs Nil and moves to the next method in L.
When tL is specified, Harp can allocate this time as it sees fit (see

parallelism in §6.2). The combination of the two limits is possible

too, instructing Harp to spend no more than tL minutes overall,

with no more than tf̄ minutes per function f in L.

Using timeouts, Alg. 1 may need to exit the inner loop with a P
equal to the empty set. If this happens, L′. f is assigned Nil which

is important for partial regeneration, in cases where only a fraction

of a library’s functionality have been successfully regenerated.
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Data: Original Library L
Result: Regenerated Library L′

L′ ← ∅
foreach f ∈ L do

I ← generateInputs()

O ← getGroundTruth(f , I )
T ← soundTypeConstraints(f ,O )
n ← 0

while true do

n ← n + 1
Pn ← allPrograms(n,T )
P ← pruneSpace(Pn , I ,O )
if P , ∅ then

L′.f ← getOpt(P )
break

end

end

end

return L′

Algorithm 1: Harp’s synthesis algorithm. Given as input a black-

box library L, it attempts to synthesize a new library L′.

During the pruneSpace method, the synthesis algorithm collects

information about the runtime performance of the regenerated li-

braries. Some of the inputs in this phase are large, to make any

differences in overhead more pronounced. This information is then

used by getOpt to rank candidates based on their runtime perfor-

mance, returning the regenerated library with the best performance.

4.3 Input Generation

Harp generates inputs for each original function f in L and exe-

cutes f to obtain the input-output pairs. Harp chooses these input

values to gather a variety of output values that, combined, highlight

key properties of f ’s behavior. As Harp does not know beforehand

what input streams are the most appropriate for inferring the be-

havior of a black-box f , it adopts an active learning algorithm to

generate f ’s inputs. There are two kinds of inputs Harp is inter-

ested in: (1) primary inputs, which are the strings on which the

string-processing computation is applied and (2) secondary inputs,

which are other parameters of f affecting the specifics of the string

computation. All mutations described below are applied concur-

rently in iterative rounds providing information or eliminating

candidates. When a mutation iteration results in no candidate elim-

inations, this phase of input generation terminates and saves the

set of candidate regenerations.

Primary inputs: The primary input of a string processing func-

tion is a string—a collection of characters—or a collection of strings.

Harp generates primary inputs of various shapes in an attempt to

understand which of their characteristics affect f ’s output. Char-
acteristics of the input shape include high-level properties such as

input length, homogeneity, or sorting, and low-level properties such

character capitalization or the existence of specific input characters.

For high-level properties, Harp starts with small inputs and

gradually mutates them to get longer inputs that satisfy certain

properties. During this iterative mutation process, Harp filters out

competing candidate functions. Example mutations include increas-

ing the number of a certain set of characters or introducing some

sorting discipline. For each mutation, a mutated input-shape specifi-

cation is used to generate a set of inputs, run it through the original

function f , and then obtain and study its outputs. After trying all

available mutation strategies, Harp checks if any candidates are

eliminated in the current iteration; if so, Harp attempts to identify

the mutations that are the most effective at eliminating candidates.

It then applies these mutations to the input-shape specification and

enters the next round of iteration.

Special characters: Input characters are particularly important

because they may affect f ’s processing locations—thus Harp at-

tempts to quickly discover a set of special characters Σ1. The key
insight behind such discovery is that that string computations are

generally applied over linear data structures that encode control

and data characters in a single data stream. Consider the following

string:

Different processing primitives may be affected by different charac-

ters. For example, a (to-upper) function converting to upper-case

operates on the entire string, a (split :) function splitting on

“:” will match only the corresponding character, and a “mask *”
function replacing characters with “*” will only match a subset of

characters. These and other examples are shown below:

To discover this set, Harp generates strings with a combination

of letters, numbers, and punctuation symbols. As soon as some of

these inputs start affecting the results, Harp narrows down the set

of symbols by mutating only parts of the input string.

Secondary inputs: Functions in the original library L rarely ac-

cept only strings as their inputs. That is, while the processing targets

the primary input string, other arguments part of the method’s in-

terface need to be provided. For example, a simple count(s, c)
method that counts all occurrences of c in s takes two arguments.

To understand the effect of other inputs to the computation, Harp in-

troduces small DSL describing possible secondary values (Fig. 5). To

maintain acceptable performance, Harp generates only constrained

inputs of these types—both in terms of size and complexity.

These values can be summarized into two broad classes. The first

class is composite values such as lists, objects (maps), and functions.

The DSL includes only two functions, helpful for cases when f is a

higher-order function. These two functions are designed to have

types that are permissive and will likely not throw exceptions. The

first function simply returns its first argument, matching any fold-
like operations; the second function returns its first argument as a

string, covering additional use cases where the first-order function

is expected to return strings—highly likely due to the domain of

Harp. Both functions take a variable number of arguments so as to

be compatible with any invocation in the black-box f .
The second class involves primitive values such as strings, num-

bers, booleans. The value ⊥ corresponds to null or undefined
values; such values are important for understanding the default

parameters or behavior of a computation.
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Value v := p | {s : v , . . . } | [v , . . . ]
| λ(x , . . .).x | λ(x , . . .).str(x )

Primitive p := s | n | b | ⊥
Boolean b := true | false
String s ∈ Σ
Number n ∈ N

Fig. 5: Harp’s secondary-input DSL. This language captures the space

of possible inputs to secondary arguments.

4.4 Mapping Library Structure

This section covers a few details on how Harp regenerates constant

fields and how it discovers the structure of a library.

Constant fields: The majority of string-related functionality is

expected to be exposed as functions. At times, however, L may

contain fields other than functions—e.g., a map of country names

to dial-in prefix codes. In these cases, Harp can copy the structure

to L′ using runtime meta-programming facilities: it traverses L’s
return object to identify and copy such values directly.

In rare cases, these inputs are hidden behind a functional inter-

face that does not allow meta-programming facilities to permeate

through. In these cases, Harp resorts again to active learning—but

its input generation leverages a built-in dictionary of common Eng-

lish words. Harp attempts these words under various combinations

and capitalizations to gain more information about the mapping.

Field discovery: To apply the techniques described earlier, Harp

needs to know how to interact with L and how to feed it inputs. To

answer this, Harp first loads the original library, an operation that

returns an object that contains the values exported by the library.

These values may include functions or other directly accessible

fields. The way Harp interacts with these fields depends on whether

the functionality about to be regenerated has been explicitly named

by the developer using Harp. If it has been named, Harp indexes

only the named functions from the returned object. If there is no

explicit naming involved, Harp uses runtime meta-programming to

traverse the returned object in order to understand and regenerate

the structure of the library. In the former case, the set L in Alg. 1

contains only developer-specified names; in the latter case, the set

contains all names.

5 GUARANTEES

A key correctness guarantee is that the Harp synthesis algorithm

(Alg. 1) will only produce string computations whose behavior is

captured by the DSL in Figure 3. Recall that Algorithm 1 maintains

a current program search size n, set of input-output examples I ,O
obtained from executions of the original library L, and set of pro-

grams P in the Harp DSL. The Harp synthesis algorithm provides

the following key correctness guarantees:

• All programs in P exhibit identical behavior as the original library

L on the list of generated inputs I (the call to pruneSpace in

Algorithm 1 filters out all DSL programs whose behavior differs).

• The set of DSL programs P contains all DSL programs of size n
or less that exhibit identical behavior as the original library L on

the list of generated inputs I .

These guarantees have an immediate corollary:

• If the original library L has the same behavior on all inputs as

some DSL program f ′ and f is of a given size n or less, then

f ∈ P . Moreover, if P = { f } (i.e., f is the only program in P ),
then the newly synthesized library L′ has identical behavior as
the original library L on all inputs.

In the limit the algorithm will generate all inputs and consider

all programs in the DSL. More precisely, for any specific input

and program of some size n, there is some finite execution of the

algorithm will generate that input and consider that program. This

fact ensures the following guarantees:

• If the original library L has the same behavior as some DSL

program f (of some size n), then at some finite point in the

execution of Algorithm 1, f ∈ P for all future execution points.

• If the original library L has different behavior than some DSL

program f (of some size n), then at some finite point in the

execution of Algorithm 1, f < P for all future execution points.

These guarantees provide a form of correctness in the limit—as

the algorithm runs, it (1) will eventually (in finite time) find the

correct DSL implementation of the original libraryL if such a correct
program exists in the DSL, and (2) will eventually (in finite time)

filter out any DSL program whose behavior does not match the

original library L on all inputs.

6 REFINEMENTS

We next present several Harp refinements.

6.1 Isolated Learning

To avoid exploitation during ALR, Harp interacts with target li-

braries in an isolated container environment. Harp first launches

a Docker container and imports the library in the context of an

TCP server. Harp then traverses the object returned by the import

statement to create a remote-procedure-call (RPC) shim, which it

then writes in the host file-system.

Harp’s ALR scaffolding infrastructure on the host environment

loads the shim module to interact with the target library. For every

invoked library function, the RPC shim serializes the arguments

and send them to the server executing in the Docker container.

Harp invokes the corresponding function and returns tehe results

back to the shim, which delivers them to Harp running on the host

environment. The channel between the RPC client function and

the corresponding function running in the container is encrypted

using NaCl authenticated encryption primitives [4].

6.2 Synthesis Acceleration

Type Guidance: Harp leverages sound type information to guide

its choice of DSL terms. This is achieved through a few different

means, starting by checking the size and type of the output. If the

output is significantly smaller, then a fold-like reduction is likely to

play a prominent role in the regenerated computation. Additionally,

if the output has a certain type—such as a number or a boolean

value—then that type should featured in the first-order function

used as part of the reduction. Outputs whose size is close to that of

the input string often correspond to add or at constructs.
The study of more complex outputs is also possible, as Harp

can leverage meta-programming available by the source language
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(a) Object- ping fragment (b) Custom context creation (c) Context rebinding

HARP
additions

Fig. 6: Harp’s detection of library-external side-effects. Harp’s basic wrapping traverses objects and wraps fields with inline monitors. Harp uses this

transformation to create a new name-to-value context by wrapping all values available in a library’s top-level scope (b). The modified context is bound to the

library by enclosing the module source (half-visible code fragment, in its original indentation) in a closure that redefines all non-local variable names as

closure-local ones, pointing to values from the modified context.

to introspect the value returned by L. This is different from other

domains where active learning is applied through serialization-

deserialization interfaces that encode all values as strings, and

thus obscure the true types of the values returned by a program

fragment. These refinements can prune the synthesis search space

significantly.

Term Weights: Different (classes of) terms from Harp’s DSL

have different likelihoods of appearing in learned DSL programs.

For example, many regenerated string-processing libraries add or

delete characters. Harp uses such likelihood information to guide

synthesis, by generating higher-likelihood terms in the DSL with

higher probability Harp explores the space of candidate programs.

Term weights depend significantly on the types of the inputs

and outputs. For example, if the output is a number then reduction

statements such as fold and built-ins such as × and + are more

likely to appear in the regenerated program.

Parallel Synthesis: Harp’s synthesis features ample opportuni-

ties for parallelization. One opportunity occurs in candidate gener-

ation, in which different worker processes explore disjoint subsets

of the candidate space. Another opportunity occurs in input gener-

ation and testing—i.e., calling the same synthesized candidate on

multiple inputs.

As scaling out involves constant overheads for process spawning

and interprocess communication, scaling out makes sense only after

constant costs are negligible relative to synthesis. This is achieved

by having Harp scale out after a few AST levels have been explored.

6.3 Multi- & Part-Library Regeneration

Multi-library Regeneration: A library L is often implemented

in terms of other libraries L1−n . The L1−n are typically smaller and

simpler than L—often significantly so—and often encodes straight-

forward processing patterns. Common composition patterns in-

clude (1) selection, where different functions (or arguments to these

functions) in L are served by different L1−n , (2) pipelining, where
different processing stages in L come from different libraries in

L1−n , and (3) enhancement, where functions in L are implemented

using functionality from L1−n . Thus, by targeting L1−n Harp can

apply ALR techniques more efficiently than it would in the full L.
To achieve this, Harp leverages its field-discovery (§4.4) and

side-effect detection (§6.4) facilities, coupled with additional inter-

position on import statements themselves. Combined, they allow

Harp to (1) detect cases where a library imports other libraries, and

(2) apply ALR on L1−n . Harp applies ALR on L1−n both individu-

ally in isolation, to extract key properties about their behavior, as

well as to L, to extract information about the interaction between L
and L1−n .

Partial Regeneration: Harp may only partially regenerate L,
if (1) a subset of library functions in L fail regeneration, e.g., due

to side-effects, or (2) if some developer tests—Harp’s very last

stage—fail. Partial regeneration can still be useful to developers in

a variety of ways. For example, the regenerated library can operate

side-by-side with a hardened version of the original library.
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The latter fast-slow setup combines

improved security properties with ac-

ceptable overall performance. The par-

tially regenerated L′ serves the major-

ity of the calls, and it does so efficiently

and securely. At times, however, L′ re-
ceives input that falls outside its ex-

pected range of operation—but not out-

side that of L. These inputs result into a runtime exception, caught

by a Harp controller component, which then forwards the input

to L. As L now executes with additional hardening in place, it is

significantly less efficient, but still computes the correct output

securely. The exact hardening mechanism and thus its performance

overhead can vary significantly [1, 26, 32, 38, 63], and depends di-

rectly on details related to the threat model—for example native

memory-unsafe binaries require additional care.

6.4 Quick Aborts

Harp implements a --quick-abort option that immediately aborts

the search if the Harp instrumentation detects behaviors such as

file system, environment variable, or network access that are not

observable to clients that work only with values returned from the

target library. Such behavior signals that the original library may

be falling outside Harp’s model of computation, allowing Harp to

quickly abort the ALR process.

←
    

←
    

←
    

…

To record li-

brary accesses to

functionality im-

plemented out-

side the library,

Harp instruments

all names that re-

main free at the

top-level scope

of the library—i.e., ones that are not bound to values in the library.

Harp starts from a few well-known root names—a static list of
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names provided by default by the language and runtime environ-

ment. For example, in server-side JavaScript these names include

the global variable table, the require function for importing other

libraries, and the process object for providing access to environ-
ment variables, process arguments, and other information in the

broader environment.

Load-Time Transformations: Modern dynamic languages fea-

ture a module-import mechanism that loads code at runtime as a

string. Harp applies lightweight load-time code transformations on

the string representation of each module, as well as the context to

which it is about to be bound, to insert instrumentation wrappers

into the module before it is loaded.

Harp’s transformations first create a modified copy of a mod-

ule’s runtime context. The context is a name-value mapping for all

free name variables available to the module by default. The modifi-

cations target the values in this mapping—traversing and wrapping

each value with an interposition mechanism that records the access

in a global access table. Harp then binds the modified context to the

module, using a source-to-source transformation that re-defines

names in the context as library-local ones and assigns to them the

values of the modified context.

Harp’s transformations have a common structure that traverses

objects recursively—a base transform wrap, which we review first

(and whose effects are shown in Fig. 6a). The wrap transform takes

an object O and returns a new object O ′, where every field f of O
is wrapped with and replaced by a method f ′. If called, f ′ adds a
record to a global map noting that this particular field f has been

accessed and then passes arguments to f .

Context Creation: To prepare a new context to be bound to a

library being loaded, Harp first creates an auxiliary hash table

(Fig. 6b), mapping names to newly transformed values: names cor-

respond to implicit modules—globals, language built-ins, module-

locals, etc.; transformed values are created by wrapping individual

values in the context to insert instrumentation hooks.

User-defined global variables are stored in a well-known location

(e.g., a map accessible through a global variable named global).
However, traversing the global scope for built-in objects is generally

not possible. To solve this problem, Harp collects such values by

resolving well-known names hard-coded in a list. Using this list,

Harp creates a list of pointers to unmodified values upon startup.

Care must be taken with module-local names such as the mod-

ule’s absolute filename, its exported values, and whether the mod-

ule is invoked as the application’s main module. These names refer

to a different value for each module, and thus attempting to access

the values directly from within Harp’s transformation scope will

fail subtly: the nameswill end up resolving tomodule-local values of

Harp itself. Harp solves this issue deferring these transformations

for the context-binding phase (discussed next).

Context Binding: To bind the code whose context is being trans-

formed with the freshly created context, Harp applies a source-

to-source transformation that wraps the module with a function

closure (Fig. 6c.). By enclosing and evaluating a closure, Harp lever-

ages lexical scoping to inject a non-bypassable step in the variable

name resolution mechanism.

The closure starts by redefining default-available non-local names

as module-local ones, pointing to transformed values that exist in

the newly-created context. It accepts as an argument the customized

context and assigns its entries to their respective variable names in

a preamble consisting of assignments that execute before the rest

of the module. Module-local variables (a challenge outlined earlier)

are assigned the return value of a call to wrap, which will be applied
only when the module is evaluated and the module-local value be-

comes available. Harp evaluates the resulting closure, invokes it

with the custom context as an argument, and applies further wrap
transformations to its return value.

7 IMPLEMENTATION & EVALUATION

In summary, Harp’s evaluation answers the following questions:

• Q1: CanHarp eliminate real vulnerabilities?Harp success-

fully eliminates vulnerabilities in 3 large-scale supply-chain at-

tacks (§7.2–7.4) by learning and regenerating the core function-

ality of the vulnerable library, eliminating any dependency to

dangerous code. To the best of our knowledge, Harp is the first

system that can eliminate these attacks.

• Q2: How long does ALR take? Applied to 17 JavaScript string-

processing libraries (§7.5), Harp learns 14 libraries within a

minute and all under an hour. It also aborts within 5 seconds on

11 other JavaScript libraries that fall outside the string-processing

domain. Harp’s domain-specific performance refinements (§6.2)

improve the runtime performance of ALR by 179.27×.

• Q3: What are the characteristics of regenerated libraries?

The regenerated libraries execute between 2% faster and 7%

slower than the original JavaScript libraries. The regenerated

libraries import nothing and use only basic JavaScript language

primitives. The original libraries, in contrast, have access to

the entire JavaScript ecosystem, including standard JavaScript

and Node.js libraries, the file system, the network, environment

variables, and process arguments.

• Q4: Is ALR applicable outside JavaScript? Applying Harp

on 5 native string-processing libraries written in C/C++ and

imported as binary modules, successfully regenerates all of them

in JavaScript (Appendix C). The regenerated libraries incur a

maximum overhead of 1% and enjoy memory and type safety

benefits not present in the original libraries.

7.1 Methodology

Workloads: To investigate Q1, we obtained 3 widely-publicized

software supply-chain security incidents from the JavaScript ecosys-

tem: (i) event-stream [40, 59], a popular library that was modified

to steal bitcoins from specific Bitcoinwallets (§7.2), (ii) left-pad [36,
67], a popular library replaced by a no-op after a package name

dispute, breaking thousands of projects including Facebook and

PayPal (§7.3); (iii) string-compare [10], where two different ver-

sions of the same string comparison library—one benign and one

malicious—appear in the same dependency tree (§7.4).

To investigate Q2 and Q3, we obtained 14 additional JavaScript

string processing libraries from npm with the help of an experi-

enced JavaScript developer and a senior undergraduate student.

The student used the npm’s search feature to search for libraries

using a variety of string-processing terms such as “padding”, “strip,”
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and “change case.” For each term, the student sorted the list of re-

turned libraries by popularity [43] to inspect the first five pages of

search results and select the library that provided the most complete

corresponding functionality. We note that this process excludes

duplicates—for example, the student found and discarded more than

10 left-pad libraries with similar or identical functionality. This

phase produced 17 unique string-processing libraries that are used

pervasively and can affect a large part of the ecosystem [70]: collec-

tively, these libraries are directly imported by several applications

and transitively imported via other dependencies by more than

100K applications. The phase also produced 11 libraries that were

misclassified as string processing libraries. We applied Harp to all

28 libraries.

To answer Q4, we obtained C/C++ libraries by searching GitHub

using the same search terms as for the JavaScript libraries. Since

many of these libraries did not have tests or client programs, we

opted for C/C++ libraries with JavaScript bindings to check compat-

ibility via tests and client programs from the JavaScript ecosystem.

This search process produced five libraries.

Evaluation metrics: We evaluate security improvements qualita-

tively and quantitatively. For known attacks (Q1), we first used the

original (compromised) library to reproduce the attack. We then

inferred and regenerated the original library and replaced the orig-

inal library with the regenerated version. We confirmed that the

regenerated version eliminated the attack. For all libraries (Q2–5),

we report the privilege reduction achieved after applying Harp.

This quantitative security metric was developed recently [65] and

corresponds to a ratio α/t , where α is the count of all APIs that are

not invocable by the library any more, due to the defense being

applied, and t is the total count of APIs made available to a library

by default by the combined built-in or third-party libraries.

We evaluate the correctness of regenerated libraries (Q3, Q5) us-

ing a combination of developer tests, client libraries or applications,

and manual inspection. We ran the developer-provided test suites

for the libraries and verified that the regenerated libraries provide

correct results. We also imported the regenerated libraries into

the top 10 client libraries or applications that directly import the

original libraries and ran the test suites for these client libraries

or applications. Finally, we manually inspected the regenerated

code to confirm that it correctly implements the intended correct

behavior of the original version.

For the learning time (Q2), we report wall-clock time after the

call npm-install up to the point where Harp either (1) aborts,

reporting intractability, (2) timeouts, failing to synthesize a library,

or (3) succeeds, regenerating a library and its appropriate bindings.

We set the timeout limit to 12 hours. We measured the runtime

performance of regenerated-libraries (Q4, Q5) using a combination

of developer tests and synthetic workloads operating in tight loops.

We repeated all performance-related experiments 100 times and

report averages.

Implementation Details: Harp currently works with black-box

libraries available in JavaScript, Python (not shown here; reported in

the extended version [blind]), and binary object files developed, for

example, in C/C++ andwrapped as native add-ons.We expect native

add-ons to be wrapped by some form of language-level interface

such Node’s NaN or N-API and Python’s ctypes or CFFI. Harp’s

ALR components, including the synthesis and DSL, are written

in JavaScript. The base set of DSL terms as well as the resulting

programs are compiled to their respective language using a small

Python compiler: the compiler currently can emit JavaScript and

Python programs, which are then executed using the interpreter of

the respective language. The regenerated programs link against a

small utility library that provides runtime support, ported once for

each target language supported by Harp.

Harp currently has a few limitations. First, it does not sup-

port libraries whose functions mutate built-in, prototype, or other

objects—such as String.prototype in JavaScript. Additionally,

Harp’s input generation algorithm does not generate non-ASCII

strings or ones with special—possibly hierarchical—structure such

as JSON, HTML, and CSS; generating the latter without any addi-

tional domain information would be impractical.

Software andHardware Setup: All experimentswere conducted

on a modest server with 4GB of memory and 2 Intel Core2 Duo

E8600 CPUs clocked at 3.33GHz, running a Linux kernel version

4.4.0-134. The JavaScript setup uses Node.js v12.19, bundled with

V8 v7.8.279.23, LibUV v1.39.0, and npm version v6.14.8; the Python

setup uses CPython 3.7.5. To perform timeline-accurate supply-

chain attacks, we set up a private registry using verdaccio [62]

available only to the server running the experiments.

7.2 Use Case: Event-Stream

The event-stream incident [40, 59], discussed extensively ear-

lier (§2), introduced a malicious dependency harvesting Bitcoin

account credentials through a popular stream-processing library.

This dependency, flatmap-stream, targeted a very specific pro-

duction environment of a cryptocurrency application; other envi-

ronments were not affected.

Security: We reconstruct the malicious library and payloads from

a variety of sources [20, 44, 51]. The library applies several checks

to verify it runs on production, as part of a specific application, and

as part of a specific build. If all these conditions hold, it then writes

to the file-system. Harp’s active learning phase does not infer any

file-system accesses; this is primarily because there are no such

accesses during the learning phase, and secondarily because Harp

does not model them. As a result, Harp regenerates an exploit-free

version of the library, confirmed by manual inspection. It makes

no use of built-in APIs, achieving a privilege-reduction of 332×.

Performance & correctness: Harp takes on average 1.4 sec-

onds to complete flatmap-stream’s active learning and regen-

eration. We manually inspected the regenerated code and found

it implements the full functionality of the original library. The

original library does not come with any test cases and the ver-

sion of event-stream that uses the malicious flatmap-stream
version has been removed permanently from npm. We therefore

manually modified event-stream commit e316336, introducing
flatmap-stream to import and use the regenerated flatmap-stream,
and apply event-stream’s tests. All 14 (100%) of event-stream’s
tests pass successfully: 13/14 tests are not affected by the flatmap-
stream addition, and 1/14 that tests flatmap-stream passes suc-
cessfully. Applying the regenerated flatmap-stream to an array

of 1000 elements over 10K runs takes 48.99 seconds—an overhead

of about 107µs per run over the performance of the original library.
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7.3 Use Case: Left-Pad

The left-pad incident [36, 67] was caused by unpublishing a pop-

ular JavaScript library, effectively replacing it permanently with a

No-Op. While left-pad itself was an 11-line moderately-popular

string-padding function, it was used by many popular projects such

as React and Babel. The unpublishing corrupted production envi-

ronments, denying them the ability to revert to an older version of

the library. As a result, the incident affected more than one third

of the Node.js ecosystem, and led to significant changes in the

un-publishing policies of public library registries.

Security: We apply Harp to an identical library built by npm
as a response to the incident, replacing the original left-pad li-

brary copied to our local registry (§7.1). Harp regenerates all of

left-pad’s functionality, fully eliminating the dependency. As a

result, left-pad’s tests still succeed after we unpublish left-pad
from our local registry because they no longer depend on the origi-

nal left-pad module. The regenerated left-pad makes no use of

built-in APIs, resulting in a privilege-reduction score of 332×.

Performance & correctness: Harp completes left-pad’s ac-
tive learning and regeneration in an average of 3.6 seconds. We

manually inspect the regenerated code and confirm it implements

left-pad’s full functionality. We apply the full test suite (35 tests)

from left-pad’s repository, all of which (100%) pass successfully.

One test is particularly interesting as it supplies ill-defined input to

trigger left-pad’s default behavior, by providing a padding length

of false, it invokes one of left-pad’s padding behaviors that

Harp learned through other false-y values. The runtime perfor-

mance of the regenerated left-pad on 10K runs is 45.66 seconds—

an overhead of about 20µs per run over the performance of the

original library.

7.4 Use Case: String-Compare

The string-compare attack involves two versions of a single li-

brary in the same codebase [10]. The earlier version of this library,

used as part of a sort function is benign. A later version, used in

the authentication module, is malicious: if provided the (authen-

tication) string gbabWhaRQ, it access the file system of the server

running the program.

Security: We apply Harp on both versions of string-compare
library. The regenerated version is identical between the two cases,

and does not contain any side-effects—nor the check that launches

the attack in the second case. Harp eliminates the string-compare
dependency from both sort and auth, replacing it with vulnerability-
free code. The regenerated string-compare makes no use of built-

in APIs, resulting in a privilege-reduction score of 332×.

Performance& correctness: Harp completes string-compare’s
active learning and regeneration in an average of 0.7 seconds. We

manually inspect the regenerated code and confirm it implements

string-compare’s full functionality. As string-compare comes

with no test cases, we apply the test cases of the sort function over a
shuffled version of Ubuntu’s wamerican dictionary words file (102K
elements); all 3 (100%) test cases pass. The runtime performance of

10K sort iterations using the regenerated string-compare takes
46.01 seconds—an overhead of about 41µs per run over the perfor-

mance of the original library.

7.5 Applying Harp to More Libraries

In this section, we apply Harp to 25 JavaScript libraries—17 string-

processing libraries and 11 other libraries—and 5 C/C++ libraries

collected from GitHub.

Table 1 shows results for 17 JavaScript string-processing libraries.

The statistics columns D1–D3 count the number of weekly down-

loads, direct dependents, and total dependents of these libraries as

reported by the npm tool: collectively, these libraries can affect a

significant fraction of the ecosystem—they total 20.22M downloads

per week, are directly depended upon by a total of 4,320 libraries,

and are indirectly depended upon by more than 117,738 libraries

and applications. The Learning columns t1 and t2 show the time it

took Harp to apply active learning and regeneration; t1 is full Harp,
whereas t2 does not include Harp’s performance refinements (§6).

The Regeneration columns Performance and Correctness show the

characteristics of the regenerated library with respect to the origi-

nal: Performance is measured using 10K iterations of several tests;

and Correctness is measured by running all the tests of the origi-

nal library and 10 client-libraries against the regenerated library,

followed by manual inspection.

Learning: Harp’s active learning and regeneration takes between

0.7 seconds and 50.9 minutes (avg.: 204.83 seconds) to complete,

with 14 out of 17 libraries regenerated within a minute and 16

out of 17 libraries regenerated within 145 seconds (2.4 minutes).

The regenerated camel-case library stands out in terms of size,

containing 8 computational statements, two of which are split
operators, taking 3059 seconds (50.9 minutes) to regenerate.

Harp’s performance refinements (§6) offer significant improve-

ments. Without any refinements, Harp takes at least 179.27× longer.

This value is a conservative estimate because Harp reaches a time-

out limit of 12 hours for 7 out of 17 libraries. This speedup includes

a 1.1× slowdown for 5 small libraries that are penalized by Harp’s

refinements. As the regeneration of these libraries remains within

a few seconds, their slowdown is considered acceptable—especially

given the overall speedup of long-running regenerations.

In terms of code coverage, the input generation algorithm exer-

cises 100% of library code for 11 out of 17 libraries. For the remaining

six libraries, the majority of the functionality not exercised is re-

lated to exception handling. In the case of decamelize (80%), Harp
does not exercise four lines handling erroneous input (non-string

arguments), and 11 lines related to a flag preserving consecutive

upper case. In the case of flatmap-stream (62.2%), Harp does not

exercise a subset of the stream-specific functionality—stream pause,
resume, destroy and end handlers—that are part of superclass func-
tionality. Harp also does not exercise exception handlers in the

write method, which are meant to handle errors propagating up

from the stream consumer. In the case of repeat-string (95.45%),

Harp misses an exception-raising statement meant to cover cases

where the first argument is not a string. The trim library (33.3%)

first checks if the input string’s prototype includes a trim method

and if so it invokes it; otherwise, implements a left and right trim

by invoking other methods—but Harp’s primary inputs always sup-

port trim as part of the string prototype. In the case of upper-case
(44%), Harp misses all the locale-specific code (confirmed by the

tests). In the case of zero-fill (80%), Harp misses a branch for
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Tab. 1: Applying Harp to JavaScript libraries. Columns D1−3 show weekly downloads, direct dependents, and total dependents; columns t1 and t2 show

the time it took to complete ALR, with and without refinements; column Coverage shows the percentage of the source code covered by the input generation

algorithm; other columns show the characteristics of the regenerated libraries compared to the original libraries.

Popularity Learning Regeneration

Library D1 D2 D3 t1 (s) t2 (s) Cov/ge (%) Perf/nce (s) (%) Correctness (%)

camel-case 126K 842 1314 3059 >12h 100 10.15 (5.6%) 9/9 (100%)

constant-case 9.3M 498 1484 22 >12h 100 9.86 (3.8%) 9/9 (100%)

decamelize 3.8M 110 249 4 14340 80 9.61 (2.9%) 40/40 (100%)

flatmap-stream 15.1M 326 832 1.4 >12h 71.21 48.99 (2.2%) 14/14 (100%)

left-pad 83K 42 175 3.6 1.3 100 45.66 (0.4%) 35/35 (100%)

no-case 15.1M 326 832 28 >12h 100 9.89 (5.3%) 31/31 (100%)

pascal-case 5.9M 89 331 145 >12h 100 10.15 (6.4%) 8/8 (100%)

repeat-string 2.8M 195 472 19 8 95.45 9.18 (-1.6%) 28/30 (93.3%)

sentence-case 43.1K 26 68 129 >12h 100 10.02 (4.9%) 7/7 (100%)

snake-case 1.6M 2.2K 832 36 >12h 100 9.95 (3.4%) 8/8 (100%)

string-compare 2.2M 71 1651 0.7 1.2 100 46.01 (0.9%) 3/3 (100%)

trim-left 6.8M 430 2979 3 3.5 100 9.36 (0.3%) 4/4 (100%)

trim-right 1.8M 43 1636 2 3.2 100 9.43 (2.9%) 4/4 (100%)

trim 1.5M 219 332 21 111 33.33 9.45 (1.2%) 4/4 (100%)

upper-case 5.4M 17 1452 3 1.9 44.44 9.38 (0.0%) 4/6 (66.7%)

write-pad 2.03M 232 1386 3 1.4 100 9.26 (0.9%) 1/10 (100%)

zero-fill 9.7M 66 2463 3 1.6 80 9.27 (-0.9%) 11/16 (68.8%)

Min 43.1K 17 68 0.7 1.2 33.33 (-1.6%) (66.7%)

Max 20.3M 2200 2979 3K >12h 100 (6.4%) (100.0%)

Avg 6.22M 411 1177 204.83 >10.2h 86.04 (2.3%) (95.8%)

when the second argument (the “filler” string) is not provided—in

which case the library returns a partially applied function.

Performance: To understand the runtime performance of regen-

erated libraries, we apply them on the tests of the original libraries

in tight loops of 10K iterations. Their performance is between -1.6%

(speedup) and 6.4% (slowdown), with an average of 2.3%. Profil-

ing shows that the overhead comes from Harp’s complex pattern

matching primitives which compile down to the language’s regular-

expression language (REL). REL is in fact not regular, as it supports

back-references and other non-regular constructs, and thus does

not perform as efficiently as the simpler string-matching constructs

found in the original libraries.

Correctness: Out of 17 libraries, 14 are fully regenerated, pass-

ing 100% of developer-provided and client-application tests. Three

libraries are partially regenerated, passing between 4/6 (66.7%)

and 28/30 (99.3%) of tests. Two of repeat-string’s tests are de-
signed to generate exceptions—not expressible in Harp’s DSL. Two

of upper-case’s tests are locale-dependent, with string locales

that fall outside Harp’s input generation algorithm. Finally, 5 of

zero-fill’s tests expect a partially evaluated function, which is

currently not expressible in Harp’s DSL.

8 RELATEDWORK

Input-Output Synthesis: Program synthesis and programming

by example automatically generate programs that satisfy a given set

of input-output examples [2, 15, 17, 21, 46, 47, 57, 66]. Harp differs

in that it works with an existing component as opposed to a fixed

set of input-output examples and interacts with the component

to build a model of its behavior. The goal is to eliminate depen-

dencies and vulnerabilities by replacing the original version with

the regenerated version, without requiring developers to provide

input-output examples manually.

Component-based synthesis [14, 16, 31, 55] aims to generate a

program consisting of library calls to a provided API. It synthesizes

code for making library calls by executing the candidate program on

a set of test cases. Harp’s approach does not depend on knowledge

of components or interfaces and generates custom inputs to infer

library properties rather than using test cases.

Active Learning: Active learning is a classical topic in machine

learning [53]. In the context of program inference, it includes learn-

ing (and generating) database interfaces, loop-free programs, or

declarative logic programs [21, 48, 56]. Harp, in contrast, works

in tandem with existing libraries to synthesize vulnerability-free

replacements that implement the same functionality with respect

to the original library and perform comparably to it—and targets

string processing libraries. Harp is the first active learning and re-

generation system to successfully eliminate software supply-chain

vulnerabilities in widely used libraries.

Component Protection: Runtime component protection tech-

niques provide monitoring, instrumentation, and policy enforce-

ment, typically through sandboxing, wrapping, or transformation [1,

18, 23, 30, 33–35, 37, 50, 52, 61]. Harp differs in that it replaces the

library with a regenerated version instead of executing the library

in a sandbox or wrapping the library to dynamically enforce a

security policy. The regenerated library therefore executes with

no runtime instrumentation overhead and requires no sandboxing.

We note that, to avoid exploitation during inference, Harp uses

a combination of sandboxing and wrapping during inference. Un-

like sandboxing or wrapping, Harp also protects against library

deletion attacks.
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Software Debloating: ALR is also related to software debloat-

ing [3, 19, 24, 25], a technique that lowers the potential for vulnera-

bilities by eliminating unused code in a program. Like debloating,

Harp can eliminate unused code in the inferred library. Unlike

debloating, which prunes computation in the original library but

leaves unpruned code intact, Harp replaces the original library with

a regenerated version that is guaranteed to conform to a safe model

of computation. Harp can also discard potentially malicious code

in the regeneration, including code that executes during inference

but does not affect the client-visible behavior of the inferred library.

Vulnerability Detection: Prior work on static [8, 12, 13, 22, 60]

and dynamic [45, 68] analysis can detect malicious code at devel-

opment or production time. Harp does not attempt to detect a

vulnerability—rather, it assumes libraries as a potential liability

with stealthy Turing-complete vulnerabilities, and rewrites them

into functionally equivalent, side-effect-free versions.

9 DISCUSSION & LIMITATIONS

Synthesis Limitations: There are desirable guarantees that Al-

gorithm 1 does not satisfy. First, if the behavior of the original

library L does not correspond to any program in the DSL, there

is no guarantee that the algorithm will determine this fact in any

finite time—it is possible that the difference in behavior will be

exposed only by an input that the algorithm has yet to consider.

Second, if the behavior of the original library L does correspond to

some program in the DSL, there is no guarantee that the algorithm

will find that DSL program in any finite time—it is possible that the

program is larger than programs that the algorithm has considered.

So given a set of DSL programs P at some point in execution

of Algorithm 1, what must be true of the relationship between the

DSL programs f ∈ P and the original library L? First, P and all

f exhibit identical behavior on all considered inputs I . Second, if
there is some program f of size n or less that has the same behavior

as L on all inputs, then f ∈ P . If additionally P = { f }, then the

algorithm will return a new library L′ that has identical behavior
as the original library L. There are two key preconditions here

which Algorithm 1 does not check: (1) there is some DSL program

f has identical behavior on all inputs as the original library L, and
(2) this DSL program is of size n or less for some known n. These
preconditions may come, for example, from the general domain

knowledge of the programmer.

Attacks on outputs: As outlined earlier (§3), the primary targets

of active library learning and regeneration are (1) Turing-complete

side-effectful attacks—e.g., ones targeting the file system, global

variables, the module system, process arguments, or environment

variables, (2) attacks via low-level, memory-unsafe, and type-unsafe

code such as ones typical in C and C++ code. Could ALR additionally

protect against attacks targeting the output of a library function?

For attacks targeting function outputs, there are two broad pos-

sibilities depending on the malicious behavior. If the malicious be-

havior is hidden and therefore not exposed during testing/normal

use, Harp will not learn the malicious behavior and thus the re-

generated code will not contain the corresponding vulnerability. If,

however, the malicious behavior is exposed during testing/normal

use, Harp would either (1) determine that the observed behavior

is outside the scope of the DSL and reject the library, or (2) learn

and regenerate the behavior. In the latter case, Harp is relying

on the exposure of the malicious behavior during testing/normal

use to detect and eliminate the behavior—i.e., we would expect the

behavior to be detected by the developer during development and

before deployment. We anticipate that, at least for string processing

programs, almost all such malicious behaviors will be outside the

scope of the Harp DSL.

Generalizing ALR: Active learning and regeneration is a black-

box program inference approach that fixes (1) a specific computa-

tional domain (SCD) such as string processing, tensor operators,

database interfaces, (2) a corresponding language (DSL) for model-

ing computations in that domain, and (3) an input generation algo-

rithm (IGA) for interacting with the black-box computation. These

three elements are interlinked and are designed to complement

each other. For example, the DSL is designed to enable differential

testing, using the IGA to guide efficient inference—by inferring

the existence or absence of certain DSL terms in the regenerated

programs while minimizing ambiguity.

An active learning and regeneration system such as Harp is

an instantiation of these three elements (SCD, DSL, IGA) for a

particular domain. We do not expect a single system to be expanded

to capture all or even a large range of computation of interest. Such

an expansion can quickly result in general computations and thus

quickly hit known intractability limits.

Applying ALR to further domains: Instead, we anticipate mul-

tiple active learning and regeneration systems, each targeting a

certain class of libraries. Harp exemplifies this approach for string

computations—a central, widely used class of computations. Other

classes of computation and associated DSLs include: arithmetic-

operation libraries, linear algebra and tensor operations, key-value

operations, spreadsheet-style computations, components that ac-

cess SQL databases, blockchain smart contracts, and stream-based

parallelizing combiners.

The technique has been applied successfully in some of these

domains—e.g., programs and program fragments that access state-

ful key-value stores [49], applications that access relational SQL

databases [54], binary data parsing and transformation, [9], and

parallel and distributed synthesis of Unix shell commands [64].

Harp is the first active learning and regeneration system targeting

security problems in the context of software supply-chains.

10 CONCLUSION

Large-scale dependency incidents such as event-stream havemade

supply-chain attacks a critical security concern. This paper presents

a new approach for addressing this concern: active library learn-

ing and regeneration (ALR) to infer and regenerate the client-

observable functionality of a black-box software dependency. ALR

replaces a third-party software dependency with one that is auto-

matically regenerated from a domain-specific program in which the

target class of attacks cannot be expressed. We demonstrate ALR

techniques in Harp, a prototype system for inferring and regen-

erating components that implement string computations. Applied

to JavaScript and C/C++ libraries, Harp completes regeneration in

under an hour, regenerates safe versions that are fully compatible

with the original library and exhibit minimal to no performance

overhead.
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A SUMMARY OF SHEPHERDING CHANGES

We have addressed all four requirements in the revised version, and

marked the parts of the revised paper with a different color to aid

our shepherd in identifying these changes.

Sooel Son <son.sooel@gmail.com> July 25, 2021

(1) Soundness/Completeness issues: please include a separate

section that addresses the limitations of Harp in terms of its

soundness and completeness. Overall in the paper, the au-

thors promised to redefine the soundness and completeness

properties.

We have addressed this requirement by completely rewriting Sec. 5

to redefine and explain the guarantees offered by Harp. We have

also added a new Section on “Discussion & Limitations” (§9), which

starts with the limitations of the theoretical guarantees provided by

Harp’s synthesis algorithm. We have also changed the definitions

in Appendix B, and note that we plan on rewriting other parts of

the paper (e.g., the outline of Alg. 1) to make these properties easier

for the reader to extract and understand.

(2) Possible future work: We recommend discussing possible

future work in this direction of the work, such as identifying

productive classes of computation that a DSL can capture for

inference and regeneration. Also, the authors need to clarify

the scope and meaning of synthesizing string computations

in software supply chain vulnerabilities.

We have addressed this requirement in the new Sec. 9—closing with

a discussion concurrent and future work in this line of research.

The lifting of double-blind constraints has allowed us to expand

on and delineate promising prior and concurrent work. We outline

seven promising classes of computations, and provide pointers to

relevant concurrent developments in contexts outside that of the

security problems associated with software supply-chain attacks.

We note that we plan on rewriting other parts of the paper such as

Sec. 1 and 2 to clarify the scope and meaning of synthesizing string

computations in software supply chain vulnerabilities.

(3) Code coverage: Please add code coverage of the collected

input-output pairs, which indirectly represent how many

functionalities from the original library are covered.

We have addressed this requirement by adding (1) a new column

in Tab. 1 showing the code-coverage results of the collected input-

output pairs, and (2) a paragraph explaining these results and sum-

marizing functionality not exercised by Harp. Due to timing con-

straints, this version of the paper reports only on code coverage

results on functionality exercised only within a 10-minute timeout

per library function; in the final version of the paper we will include

numbers for the full synthesis runs (i.e., for the full time reported

in column t2(s)).

(4) Algorithm 1: Expand and explain all subprocedures in

Algorithm 1.

We have addressed this requirement by expanding Sec. 4.2 to in-

clude, explain, and exemplify all five sub-procedures mentioned in

Algorithm 1.15
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Other changes: We have also added information about the popu-

larity of libraries in Tab. 1. Due to tight timing constraints, we have

not yet addressed other reviewer suggestions, but plan on doing so

as promised in the rebuttal. Thank you!

B PROOF SKETCHES

Definition B.1. (IO-Correctness) Given a function f , the syn-
thesized function f ′ is said to be IO-correct, if and only if, f ′ is
expressible in the Harp DSL (with constants extracted from f ) and
for all input i consistent with the input type of f , f (i) = f ′(i).

Definition B.2. (Consistentency w.r.t. function f , input set I ,
andmaximumprogram size n)A synthesized function f ′ is said
to be consistent w.r.t. a function f , input set I of sizem containing

inputs consistent with the input type of f , and a maximum program

size n, if f ′ is expressible in the Harp DSL (with constants extracted

from f ) and is of size less than equal to n, and for all inputs i ∈ I :

f (i) = f ′(i)

Note that, given a function f , the IO-correct function f ′ is con-
sistent w.r.t. function f , for any input set I (consistent with the

input type of f ), and any maximum program size n greater than

the size of f ′.

Theorem B.3. (Initial State) For any function f , all functions f ′

in Pn are consistent w.r.t function f , input set I = ∅, and maximum

program size size n. Also, if there exists a function f ′ of size less than
equal to n, which is IO-correct with respect to f , then f ′ ∈ Pn .

Proof. The Harp algorithm extracts all constants from function

f and instantiates all sketches is the Harp DSL of size n. The TypeT
(extracted using soundTypeConstraints) is a sound approximation

of the actual output type of f . A function f ′ ∈ Pn if and only if f ′

of size less than equal to n, is expressible in the Harp DSL (with

constants extracted from f ), and T is a sound approximation of

f ′’s output type. Therefore, given I = ∅, all functions in f ′ ∈ Pn
are consistent with f (input set I = ∅ and max size n).

Also, if there exists a IO-correct function f ′ of size less than

equal to n, then f ′ is consistent with respect to f (I = ∅ and max

size n) and T is a sound approximation of the output type of f ′.
Therefore, if there exists a IO-correct function f ′ of size less than
equal to n, then f ′ ∈ Pn . □

Theorem B.4. (Consistency) Given a function f ∈ L, let I be
the set of inputs returned by the function generateInputs, Pn be the

set of programs returned by allPrograms, and P be the set of pruned

program pruneSpace. If P , ∅ and f ′ is equal to getOpt(P),then f ′

is consistent w.r.t. function f , input set I , and maximum program size

n. Also, if the IO-correct function f ′ ∈ Pn , then f ′ ∈ P .

Proof. pruneSpace only prunes a function f ′ ∈ Pn if and only

if ∃i ∈ I , such that f ′(i) , f (i). Therefore, all f ′ ∈ P are consistent

with respect to f (input set I and max size n). The getOpt returns
a function f ′ ∈ P , therefore if the algorithm synthesis a function

f ′ for function f , then f ′ is consistent with respect to f (input set

I and max size n).
pruneSpace will never prune out the IO-correct function f ′ as

for all inputs f (i) = f ′(i). Therefore, if f ′ ∈ Pn , then f ′ ∈ P . □

Theorem B.5. (Convergence) Given a function f and a maxi-

mum function size n, let Fn be the set of functions in the Harp DSL

of size less than equal to n, such that, a IO-correct function f ′ ∈ Pn .
As we add more inputs to the set of inputs generated by function

generateInputs, Harp will synthesize a function f ′′, such that, f ′′

and f have the same output on an increasing set of inputs.

Proof. Pn is equal to the set returned by allPrograms(n,T ).
From Theorem B.3, f ′ ∈ Pn . Let I be the set of input set constructed
by generateInputs. Let PI be the set of programs returned by the

function pruneSpace. Note that if f ′ ∈ P , then for all I , f ′ ∈ PI
(Theorem B.4).

Note that, if I0 ⊆ I1, then PI1 ⊆ PI0 (as for any function f ′′ ∈ PI1 ,
then f ′′ has the same output as f on inputs in I0).

A larger set of inputs allows Harp to prune out functions which

do not have the same output as f on this larger set of inputs. There-

fore, by adding more inputs, Harp will synthesize a function f ′′,
such that, f ′′ and f have the same output on an increasing set of

inputs. □

C ADDITIONAL EVALUATION RESULTS

Non-string-processing Libraries: We also apply Harp on 11

libraries that were misclassified as processing strings, to evalu-

ate Harp’s --quick-abort mechanism. On these libraries, Harp

aborts ALR within 5 seconds with a warning that they contain

side-effectful computations that cannot be learned. Eight of these

libraries import built-in modules that are not supported by Harp

such as debug, http, or fs—for example, minimatch depends on

fs and is thus not inferable. One of these libraries, chalk, depends
indirectly on os and tty for checking the environment for color

support and thus it not inferable. Finally, ignore and attn pro-

vide their functionality by extending the runtime context with an

auxiliary value.

L ALR P(L′) C(L′)

string-upper 2.9s 1.3% 66.7%

right-trim 2.7s 1.8% 100%

left-trim 2.6s 0.7% 100%

lr-trim 46.7s 0.4% 100%

repeat-text 17.1s 0.7% 100%

Fig. 7: C/C++ ALR. Harp applied

to C/C++ libraries.

C/C++ Libraries: Fig. 7 sum-

marizes results of applyingHarp

to 5 C/C++ libraries, including

the time to complete learning

(column ALR), the regenerated-

library performance (column P(L′)
with positive values for slowdown

and negative for speedup), and

its correctness with respect to

the original one (column C(L′), counting percentages of test cases).

These libraries export a single function and are wrapped with

Node’s NAN module [6].
1

Harp’s ALR ranges between 2.6–17.1s (avg.: 14.4s), driven by the

size of the regenerated library. Naturally, the performance of the

regenerated JavaScript libraries is lower that that of the original

compiled libraries, and ranges between 0.4–1.8% (avg.: 1.0%) of the

original library’s runtime performance (Col. P(L′)). Harp regener-
ated full library behavior, except string-upper’s locale-dependent
functionality.

1
NAN is an abstraction layer meant to simplify the development and maintenance of

native add-ons over a constantly changing V8 API.
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