
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Supply-Chain Vulnerability Elimination
via Active Learning & Regeneration

Anonymous Author(s)

ABSTRACT

Software supply-chain attacks target components that are inte-

grated into client applications. Such attacks often target widely-

used components, with the attack taking place via operations such

as file system and network accesses that do not affect the values

that the component returns to the client and therefore preserve the

client-observable behavior. We propose new active library learning

and regeneration (ALR) techniques for inferring and regenerating

the client-observable functionality of software components. Using

increasingly sophisticated rounds of exploration, ALR generates

inputs, provides these inputs to the component, and observes the

resulting outputs to infer a model of the component’s behavior as

a program in a domain-specific language. We present Harp, an

ALR system for string processing components. We apply Harp to

successfully infer and regenerate string-processing components

written in JavaScript and C/C++. Our results indicate that, in the

majority of cases, Harp completes the regeneration in less than a

minute, remains fully compatible with the original library, and de-

livers performance indistinguishable from the original library. We

also demonstrate that Harp can eliminate vulnerabilities associated

with libraries targeted in several highly visible security incidents,

specifically event-stream, left-pad, and string-compare.

1 INTRODUCTION

Malicious adversaries increasingly employ software supply-chain

attacks [7, 27–29, 58]. Rather than directly targeting a victim soft-

ware, these attacks target a victim’s supplier, exploiting the fact

that the victim software depends, directly or indirectly, on software

provided by the supplier. A common scenario is that the attacker

purposefully inserts vulnerabilities into open source software com-

ponents that are then integrated into the eventual victim software.

Modern software often integrates hundreds to thousands of small

components, with many components integrated not directly, but

only via transitive dependencies [27, 39, 70]. It is therefore impracti-

cal for developers to audit the code that implements the integrated

components—indeed, developers can easily be completely unaware

of the full range of components that their system may integrate.

For these reasons, even very simple, widely used components can

successfully carry vulnerabilities into client software systems.

For a compromised component to remain undetected, it must

typically deliver correct observable behavior to its client applica-

tions. Inserted vulnerabilities are therefore typically triggered only

in very specific execution contexts and exhibit malicious behav-

ior (such as stealthily exfiltrating sensitive data [5, 41] , stealing

digital assets [42, 69], or performing covert computations on the

client computing platform [11, 59]) that does not interfere with

correct client-observable behavior. A common scenario is that the

client observes only the functional behavior of the component, i.e.,

the results that it returns to the client when invoked, and not any

Lib-N
develop
program

Lib-1

develop
program

test

test

deploy

deploy

attack!

ALR

lint

lint+HARP

Without
HARP

Fig. 1: Harp usage scenario. A stealthy supply-chain vulnerability can

be activated long after deployment. Harp can be applied before or dur-

ing development (shown) to obtain a collection of safe regenerated string

libraries. Harp can also be deployed at later stages (during development

or even while in production, not shown) to replace potentially malicious

libraries with safe regenerated versions.

malicious side effects, additional computation, or external commu-

nication that the component may perform when it executes.

Motivated by this observation, we investigate a new approach to

eliminating vulnerabilities in software components. This approach

takes a potentially compromised component, explores the behavior

of the component in a controlled environment to learn a model of

its functional behavior (this model excludes behavior characteristic

of inserted vulnerabilities), then uses the model to regenerate a new

version of the component. In this paper we present a system, Harp,

that applies this approach to automatically regenerate vulnerability-

free versions of widely used string libraries, including libraries that

operate on collections (such as lists or streams) over strings and

higher-order computations that map or fold over such collections.

Deployment Scenarios: Harp supports a range of deployment

scenarios. It can be used before application development starts

to obtain a collection of safe regenerated string libraries that can

be integrated into multiple applications developed by one or more

organizations (Figure 1). It can also be deployed during development

as new string libraries are integrated into the application. Finally,

it can be deployed after the application is in production to replace

potentially malicious libraries with safe regenerated versions.

Scope and Limitations: Our approach targets simple libraries

that implement familiar utility computations with broad applicabil-

ity across a wide range of applications. Such libraries comprise a

compelling target for attackers because (1) they enable attackers

to effectively target a broad range of computations and (2) they

are often imported indirectly via higher-level libraries (as opposed

to imported directly by the application developer), and as a result

are not inspected by the application’s nominal developers. Many

developers may easily be unaware that their applications integrate

the target library.

Our approach also targets libraries whose behavior can be accu-

rately captured with a domain-specific language (DSL). The DSL

promotes effective inference and representation of the library be-

havior and eliminates malicious computations as inexpressible.

Our current Harp implementation targets string libraries. Such

libraries implement foundational baseline functionality used widely

in modern software systems. This is especially true for dynami-

cally typed language such as JavaScript that use runtime string

1

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Anonymous submission #59 to ACM CCS 2021, Due Jan. 20, 2021, Seoul, TBD Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

manipulation even for basic operations that in other languages

are performed via type-safe alternatives such as type-constructor

pattern matching. This is also true for many web applications,

in which strings and string manipulations play a prominent role.

Strings are therefore integrated, often indirectly, in the full range of

JavaScript applications and are typically treated as standard compo-

nents within the JavaScript ecosystem. We have developed a DSL

that effectively captures the semantics of string computations and

supports the efficient representation, manipulation, and inference

of the underlying behavior implemented by string libraries (§4.1).

Our experimental results highlight the benefits that our approach

can deliver for clients of such libraries (§7).

This focused approach comes with limitations. First, it works

best for widely used libraries whose computations can be captured

with an efficiently inferrable DSL. We anticipate that such libraries

will implement relatively simple, well understood computations.

We also anticipate that the approach will work best for functional

computations. Although it is possible to work with computations

that perform externally visible actions such as file system or net-

work accesses, we anticipate that it may be more difficult to ensure

that the regenerated computations contain no malicious code.

Result Summary: Harp successfully eliminates vulnerabilities

in 3 large-scale supply-chain attacks by learning and regenerating

the core functionality of the vulnerable library, eliminating any

dependency to dangerous code (§7). We are aware of no other

system that can successfully eliminate these attacks.

Applied to 17 JavaScript string-processing libraries (§7.5), Harp

learns 14 libraries within a minute and all 17 under an hour. It also

aborts within 5 seconds on 11 other JavaScript libraries that fall

outside the string-processing domain. Harp also successfully learns

and regenerates 5 C/C++ string processing modules imported as

JavaScript binary modules. The regenerated libraries execute be-

tween 2% faster and 7% slower than the original JavaScript libraries

and cannot use functionality beyond basic JavaScript primitives.

Key properties of Harp’s synthesis algorithm guarantee that, in

the limit, our proposed learning and regeneration techniques pro-

duce candidate programs with the same client-observable behavior

as the original string library, if such a candidate program exists,

and without malicious behaviors that fall outside client-observable

behavior.

Contributions: We make the following contributions:

• Active Learning:Given a component to regenerate, Harp choos-

es inputs, feeds these inputs to the component, and observes

the resulting outputs to infer a model of the client-observable

functionality that the component implements. Harp executes the

component in a controlled environment to discard any behavior

that is not observable in the direct functional interactions with

the Harp learning system.

• Domain-Specific Language: Harp builds the inferred model

as a program in a DSL for capturing string computations, includ-

ing computations over collections of strings and computations

that map or fold over such collections. This approach provides

important benefits: (1) Tractable Learning Without Overfitting:

The DSL acts as a strong regularizer that focuses the inference

on the target class of string computations. It prevents overfit-

ting and promotes efficient inference that typically requires only

automatically generated input-output observations to precisely

identify a specific string computation within the larger class of

string computations. (2) Safe Modeling: The DSL is designed to

express only legitimate string computations. The inferred model

therefore excludes behaviors that augment string computations

with auxiliary malicious computations.

• Regeneration: Given a string computation in the DSL, Harp

regenerates the computation in the desired target programming

language, with anymalicious behavior in the original component

not learned during inference and discarded in the regeneration.

• Experimental Results: It presents results that characterize the

ability of Harp to learn and regenerate a range of string libraries

and highlight its ability to eliminate several software supply

chain attacks that target string libraries.

Paper structure: §2 presents background and an example that

highlights the operation of Harp applied to the event-stream
incident [40, 59]. §3 presents the threat model, §4 presents core

ALR techniques, and §6 presents refinements that improve the

efficiency of the inference and regenerated libraries. §7 presents

the experimental evaluation; §8 presents related work, and §10

concludes.

Appendix B sketches the proofs of Harp’s synthesis properties,

and Appendix C provides additional evaluation results. An online

Appendix contains anonymized accompanying material, which will

be made available upon paper acceptance:

https://anonymous.4open.science/r/harp-anon-734D

2 BACKGROUND & EXAMPLE

Weuse the event-stream incident [40, 59], where a popular stream-

processing library was modified to steal bitcoins from carefully

selected targets, as an example of the attacks Harp is designed

to eliminate. At the time of the incident, event-stream was used
(imported either directly or indirectly) by thousands of applications

and averaged about two million downloads per week. When its

author handed off maintenance to a volunteer—common practice

in open-source development projects—the new maintainer added

an obfuscated, malicious library called flatmap-stream as a de-

pendency to event-stream.
The malicious flatmap-stream library is designed to harvest

account details from select Bitcoin wallets. If run in the dependency

tree of a specific Bitcoin application called Copay, flatmap-stream
loads Copay’s account module containing the Bitcoin wallet cre-

dentials of the user using Copay. It then overwrites the account’s
getKeys method with one that copies and stores the credentials on

the side. It then loads the http module, and posts the credentials
to a remote server, before returning the results to the caller method.

We note that flatmap-stream also maps a function over stream

elements. Because this behavior is desired client-observable behav-

ior, simply removing flatmap-stream breaks the client application.
The attack succeeds by performing effects—loading account, over-
writing getKeys, importing http, and calling post—that do not

interfere with the client-observable behavior. The attack is not de-

tectable by static analysis, because the attacker employed a series

of dynamic encryption passes, nor dynamic analysis because the

2

https://anonymous.4open.science/r/harp-anon-734D

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Supply-Chain Vulnerability Elimination via Active Learning & Regeneration Anonymous submission #59 to ACM CCS 2021, Due Jan. 20, 2021, Seoul, TBD

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Regen/ted
Library

DSL

Interface
Extraction

Loading &
Instr/ion

✘

Input
Generation

✔

1

3

4

2

Isolated Environment

✘✘ ✘✔

L

L

✔ ✔ ✔

✘
✔

Synthesis
✔
✔
✔

5
L'

6

Original
Library

L

Fig. 2: Overview. In an isolated container environment, Harp loads a

library and inspects its interface. Using increasingly sophisticated rounds

of exploration, it generates inputs, provides these inputs to the library, and

observes the resulting outputs to infer a model of the library’s behavior as

a program in a domain-specific language.

malicious code activates selectively far from development and test-

ing: only when event-stream was part of Copay’s dependency

tree, only when run on the “live” bitcoin network, and only on

users that had a balance of 100 bitcoin or more [51]. When run in

any other context, the compromised version of flatmap-stream
exhibits identical behavior as the correct version.

Applying Harp: Harp can directly target a specific dependency

or a library that integrates multiple dependencies. The following

line applies ALR directly to flatmap-stream:

harp -ft js flatmap -stream

Harp first loads flatmap-stream in an isolated container envi-

ronment and applies lightweight program transformations to in-

strument its execution (Fig. 2’s 1○). This instrumentation records

operations such as library imports, file-system reads, and global

variable accesses that flatmap-stream performs. Harp also ex-

tracts information about the library interface (2○). This information

includes the number of returned methods and fields and the number

of arguments for each method. Harp then runs flatmap-stream
on synthesized inputs, to extract information about the types of

each argument.

Harp next uses flatmap-stream to synthesize a program in

the Harp DSL as follows. It iteratively generates candidate pro-

grams in the Harp DSL, filtering out candidate programs that do

not match the extracted type information (3○). It then executes

the original version of flatmap-stream and remaining candidate

programs on synthesized inputs (4○). It observes the parameter and

return values of the original library and the candidate DSL pro-

grams (these parameter and return values are the client-observable

behavior). It filters out candidate programs that exhibit different

client-observable behavior than the original library (5○).

In the limit, this process is guaranteed to produce a candidate

program with the same client-observable behavior as the original

library (6○), if such a candidate program exists (§5). In practice,

Harp is usually able to synthesize a unique successful candidate

program within an hour and typically within minutes (§7). Harp

also implements a --quick-abort option that immediately aborts

the search if the Harp instrumentation detects any non-client-

observable behavior such as file system, environment variable, or

network access.

In our example, the malicious flatmap-stream behavior is not

triggered in our isolated container environment and flatmap-stream

exhibits fully correct behavior. Working with 2,536 inputs, Harp

takes 1.4 minutes to synthesize the following correct DSL pro-

gram, which exhibits identical behavior as the correct version of

flatmap-stream:

f s = map (squash n) | "{(c)}"

Here fmaps the function squash n over the elements of s, thereby
flattening s, and then pipes each of the results to an output pattern,

which simply outputs its input element.

Harp then compiles the synthesized DSL program to the follow-

ing JavaScript library:

const libHarp = require('./lib -harp.js');

let program = (f, isAsync) => {

const stream = new libHarp.Stream ();

stream.addOperation(libHarp.squash);

stream.addUserOperation(f, isAsync);

return stream;

};

module.exports = program;

The compiled regenerated library is a direct translation of the in-

ferred Harp DSL program. It links to lib-harp, a module that

supports Harp’s core functionality (part of the TCB, §3).

3 THREAT MODEL

Harp protects against an adversary that fully controls a target

component and can modify it in any way that does not affect the

client-observable functionality of the component. By preserving

the client-observable functionality, the adversary aims to execute

undetected attacks when the component is integrated into an ap-

plication. Examples of modifications include added functionality

that reads from the file system, sends messages over the network,

reads environment variables, or writes to global variables.

For ALR to regenerate a successful replacement, the library must

exhibit the desired behavior during testing and this desired behavior

must conform to the ALR DSL. We anticipate that our target class

of software supply-chain vulnerabilities will typically satisfy these

two requirements—their goal is typically to provide the client with

the desired functionality while either (1) stealthily opening up a

vulnerability that can be remotely exploited by carefully crafted

inputs, or (2) silently exfiltrating data or modifying the system on

which it runs. To avoid exploitation during learning, ALR runs the

target library in a controlled isolated environment.

An attacker may also simply remove the library from the ecosys-

tem, disabling any application that depends on the library. By replac-

ing the library with a regenerated local version before the original

library is removed, ALR eliminates the dependence and enables

applications to continue to operate successfully even in the absence

of the original library.

The language’s runtime environment, bindings for locating and

loading libraries, a small compiler offered by Harp and the as-

sociated lib-harp.js runtime-support library are all part of the

trusted computing base (TCB). To capture possible interactions be-

tween libraries, Harp is assumed to be loaded before other libraries.

It is also assumed that other libraries do not cooperate with the

target library to attack the system.

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Anonymous submission #59 to ACM CCS 2021, Due Jan. 20, 2021, Seoul, TBD Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Module m := s |m . s
Statement s := add c l | del l | at l b | repeat n s

| toggle p o | map π | fold b | split σ s σ
Location l := i | /p/
Index i := n | start | end
Predicate p := not p | or p p | and p p | k
Pipeline π := π . π | b | squash n | o
Char. Class c := α | n | σ | regex r | capt k
Output o := o . o | c | ⊥ | b ⊥
Capture k := k . k | p | p ⊥
Built-ins b := + | − | × | % | Math.* | String.*
Regex r := r | α | n | σ | * | +

Special σ ∈ Σ1
Alpha α ∈ Σ2
Num n ∈ N

Fig. 3: Harp’s library DSL. The domain-specific language (DSL) captures

the space of inferable program libraries.

4 ACTIVE LEARNING & REGENERATION

Harp combines three components: a DSL for specifying string-

processing computations (§4.1), an algorithm for inferring com-

putations in the DSL (§4.2), and an input generation component

that produces the inputs for the inference algorithm (§4.3). The

three components work in tandem, aided by lightweight runtime

interposition for mapping the interface of a library (§4.4).

4.1 Domain-specific Language

Fig. 3 presents the Harp DSL. The DSL specifies the set of all

programs that can be constructed by Harp, broken down into

a few broad classes: (1) computational primitives, which apply

transformations on their input, (2) built-in primitives for number

and string manipulation commonly offered by high-level languages,

(3) input ranges, over which these primitives are applied, and (4)

character classes, used for pattern ranges and primitives. More

complex classes often combine less complex ones.

Computational primitives: Computational primitives are either

statements or pipelines. Statements include add and del primitives

for introducing and deleting characters and higher-order map and

fold primitives for applying a first-order primitive over a range.

Pipelines apply a series of operators to a collection of elements in an

input stream—optionally recursively to elements of their elements.

These primitives are Harp’s primary building blocks; their oper-

ational semantics are presented in Fig. 4. The transition function

=⇒ maps a computational primitive within our DSL to its output

value. For example, the primitive add accepts a character c , a lo-
cation l , and a string s , and returns a string that is the result of

adding the character c at location l in s . Strings are encoded as lists

of characters, list concatenation is encoded as ·, and operations

encoded in sans − serif are built into Harp—for example, match
accepts a predicate p and a string s and returns three character lists:
(i) a string s1 up to (but not including) the match, (ii) the matching

string s2, (iii) the rest of the string s3 following s2 in s .
We note that this is only a small set of key operators, which

are augmented by built-in operators, input ranges, and character

classes. Harp’s DSL contains a significant number of operators,

which allow it to capture a large class of functionality required to

implement string-processing functions.

Built-in primitives: This class contains primitives offered com-

monly by the standard libraries of different high-level programming

languages, including operations for arithmetic—e.g., log, sqrt, etc.—
and string manipulation—e.g., toUpper, toAsciiCode. The class of
Built-ins re-implements these operators from scratch to address two

challenges. The first challenge is that different languages offer dif-

ferent operators and under different names; the Harp DSL unifies a

common subset under a common set of identifiers. The second chal-

lenge is that the invocation patterns of such primitives are different

for different languages—for example, JavaScript’s n.toString is

invoked directly on a number n, whereas Python str(n) takes n
directly as an argument. Harp DSL introduces these operators as

functions whose first argument is the input string.

Input ranges: Computational primitives often take as argument

a location within the string. In their simplest form, locations are

indices relative to the start of the input segment, which can be a

string or a substring within that. For example, the index start in
the expression (at start String.toUpper) matches the beginning

of the string.

Locations can also be predicates that pattern-match on the form

of the string. Predicates are formed by the composition of a simpler

set of base predicates. Composition operators include negation,

disjunction, and conjunction. Base predicates are centered around

a simple pattern-matching language that includes characters, num-

bers, “
*
” (Kleene-star superscript), and “

+
” (Kleene-plus superscript).

For example, the predicate /a+/ in at (/a+/) (String.toUpper)
matches one or more a characters.

Character Classes: The DSL includes three sets of characters.

Two of these sets come pre-configured and built into the DSL:

(1) the set of integer numbers, and (2) the set of alphanumerics—

including number characters “0” to “9”, lowercase letters “a” to “z”,
uppercase letters “A” to “Z”, and punctuation symbols. The third

set contains characters that are special to a particular computation.

The members of this set are discovered during the learning phase

via input generation (§4.3).

Capture and output expressions: Two examples of how simple

elements like character classes and built-in primitives are used

to construct more powerful primitives are capture and output
expressions. toggle’s second argument is an output expression,

which can be thought of as a format string that one would pass

into a function like C’s printf, describing the formatting of the

function’s output. It can contain literal characters, as well as special

identifiers, which are bound to strings that were matched as part

of toggle’s first argument, its predicate, and captured using a

capture expression. For instance, whenever toggle encounters any
character preceding an uppercase character in the program:

toggle f'{/./(a)}{/[A-Z]/(b)}' '{(a)}- {

↪→ to_lower (b)}'

it will output the first character it matched—which it assigned to

variable a in the capture expression—followed by a dash, followed

by the captured uppercase character (assigned to b) converted into
lowercase.

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Supply-Chain Vulnerability Elimination via Active Learning & Regeneration Anonymous submission #59 to ACM CCS 2021, Due Jan. 20, 2021, Seoul, TBD

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

l = index 0

add l c s =⇒ [c] · s
Add1

l = index i l ′ = index i − 1
s = [s0] · s1−n s′1−n = add l ′ c s1−n

add l c s =⇒ [s0] · s′1−n
AddI

l = /p/ (s1, s2, s3) = match p s
s′3 = add l c s3

add l c s =⇒ s1 · c · s2 · s′3
AddP

l = index 0

s = [s0] · s1−n

del l c s =⇒ s1−n
Del1

l = index i l ′ = index i − 1
s = [s0] · s1−n s′1−n = del l ′ s1−n

del l s =⇒ [s0] · s′1−n
DelI

l = /p/ (s1, s2, s3) = match p s
s′3 = del l s3

del l s =⇒ s1 · s′3
DelP

(s1, s2, s3) = match p s
s′3 = at l c s3

at l c s =⇒ s1 · c · s′3
At

n , 0 s′ = f s

repeat n f s =⇒ repeat (n − 1) f s′
RepeatN

n = 0 s′ = f s

repeat n f s =⇒ s′
Repeat0

(s1, s2, s3) = match p s

toggle l f s =⇒ s1 · (f s2) · s3
Toggle

s = []

map f s =⇒ []
MapE

s = [s0] · s1−n s′0 = f s0
s′1−n = map f s1−n

map f s =⇒ [s′0] · s
′
1−n

MapF

s = []

fold f r s =⇒ r
FoldE

(s1, [], []) = match /c/ s s′1 = f s1

split c f c′ s =⇒ s′1
SplitS

s = [s0] · s1−n s′1−n = fold f r s1−n s′0 = f s0 s′1−n
fold f r s =⇒ s′0

FoldF

s = []

split c f c′ s =⇒ []
SplitE

(s1, s2, s3) = match /c/ s s′1 = f s1 s
′
3 = split c f c′ s3

split c f c′ s =⇒ s′1 · [c
′] · s′3

SplitM

Fig. 4: DSL Semantics. A subset of Harp’s DSL semantics, describing Harp’s computational primitives.

4.2 Synthesis Algorithm

Alg. 1 outlines Harp’s library synthesis algorithm, which synthe-

sizes a new library L′ for a library L.

Initial configuration: For each function f in L, Alg. 1 synthe-

sizes a function f ′ by exploring the space of programs expressible

in Harp’s DSL. It starts by invoking procedure generateInputs ,
which generates a set of inputs as described in the next section (§4.3)

and stores them in I . The algorithm then invokes getGroundTruth ,
which runs the original function f on the set of inputs I to obtain

a set of outputs O . These outputs are considered ground-truth

outputs, because they are generated by the reference implementa-

tion. For example, applying getGroundTruth to f = length and
I = ["a", "bb", "ccc"] returns O = [1, 2, 3].

Alg. 1 next invokes soundTypeConstraints to collect a set of

sound type information T for the values in O . This procedure in-
cludes several type-inference tests for checking whether the values

inO represent numbers, whether their length is significantly longer

or shorter than the inputs, and whether they contain any special

characters. For example, the result of calling soundTypeConstraints
on a String.length function would return Strinд→ Number .

Navigating the search space: The algorithm then prepares the

search space of candidate regenerated programs, which is paramet-

ric over the maximum number n of terms used in the program—i.e.,

the size of the abstract syntax tree (AST) of each candidate regener-

ated program. Specifically, this space is explored in repeated rounds

of increasing complexity and size of the synthesized program.

For each size n, Alg. 1 first invokes procedure allPrograms to
obtain all possible programs whose AST size is not greater than

n and whose type satisfies the constraints in T . The allPrograms

procedure takes a number n and a set of sound type constraints

T and returns a set Pn containing all of the programs of size n

that satisfy these type constraints. Consider an example where (1)

all programs of AST size 1 are captured by the set of single-term

programs {count, toString, +, -, *}, and (2) the type constraints

include Number→Number→Number. Then P1 = {+, -, *}.
The algorithm then invokes pruneSpace to eliminate candidate

programs in Pn whose input-output behavior does not conform to

(I ,O). This procedure eliminates candidate programs with behavior

that is not identical to f —i.e., programs for which not all inputs

in I produce outputs in O . At times, pruneSpace generates more

input-output examples to further differentiate between candidates

and thus prune the search space even further. It finally returns a set

of candidate programs P , all of which implement f ’s input-output
behavior on the input-output examples.

Finally, Alg. 1 inspects the set P . If P is not empty, it ranks the

candidate programs in P by invoking getOpt , which returns the

highest-performance program (see below).

Other information: The synthesis algorithm maintains some

additional information on the side (not shown in Alg. 1). First, the

synthesis algorithm is configured to run up to a time limit—either

a limit tf̄ per function f in L or a limit tL for L overall. If only tf̄
has been specified, then tL is calculated as tf̄ × | f1−n | spread fairly

across all functions f1−n in L; when Harp timeouts for one of the

methods, it simply outputs Nil and moves to the next method in L.
When tL is specified, Harp can allocate this time as it sees fit (see

parallelism in §6.2). The combination of the two limits is possible

too, instructing Harp to spend no more than tL minutes overall,

with no more than tf̄ minutes per function f in L.

Using timeouts, Alg. 1 may need to exit the inner loop with a P
equal to the empty set. If this happens, L′. f is assigned Nil which

is important for partial regeneration, in cases where only a fraction

of a library’s functionality have been successfully regenerated.

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Anonymous submission #59 to ACM CCS 2021, Due Jan. 20, 2021, Seoul, TBD Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Data: Original Library L
Result: Regenerated Library L′

L′ ← ∅
foreach f ∈ L do

I ← generateInputs()

O ← getGroundTruth(f , I)
T ← soundTypeConstraints(f ,O)
n ← 0

while true do

n ← n + 1
Pn ← allPrograms(n,T)
P ← pruneSpace(Pn , I ,O)
if P , ∅ then

L′.f ← getOpt(P)
break

end

end

end

return L′

Algorithm 1: Harp’s synthesis algorithm. Given as input a black-

box library L, it attempts to synthesize a new library L′.

During the pruneSpace method, the synthesis algorithm collects

information about the runtime performance of the regenerated li-

braries. Some of the inputs in this phase are large, to make any

differences in overhead more pronounced. This information is then

used by getOpt to rank candidates based on their runtime perfor-

mance, returning the regenerated library with the best performance.

4.3 Input Generation

Harp generates inputs for each original function f in L and exe-

cutes f to obtain the input-output pairs. Harp chooses these input

values to gather a variety of output values that, combined, highlight

key properties of f ’s behavior. As Harp does not know beforehand

what input streams are the most appropriate for inferring the be-

havior of a black-box f , it adopts an active learning algorithm to

generate f ’s inputs. There are two kinds of inputs Harp is inter-

ested in: (1) primary inputs, which are the strings on which the

string-processing computation is applied and (2) secondary inputs,

which are other parameters of f affecting the specifics of the string

computation. All mutations described below are applied concur-

rently in iterative rounds providing information or eliminating

candidates. When a mutation iteration results in no candidate elim-

inations, this phase of input generation terminates and saves the

set of candidate regenerations.

Primary inputs: The primary input of a string processing func-

tion is a string—a collection of characters—or a collection of strings.

Harp generates primary inputs of various shapes in an attempt to

understand which of their characteristics affect f ’s output. Char-
acteristics of the input shape include high-level properties such as

input length, homogeneity, or sorting, and low-level properties such

character capitalization or the existence of specific input characters.

For high-level properties, Harp starts with small inputs and

gradually mutates them to get longer inputs that satisfy certain

properties. During this iterative mutation process, Harp filters out

competing candidate functions. Example mutations include increas-

ing the number of a certain set of characters or introducing some

sorting discipline. For each mutation, a mutated input-shape specifi-

cation is used to generate a set of inputs, run it through the original

function f , and then obtain and study its outputs. After trying all

available mutation strategies, Harp checks if any candidates are

eliminated in the current iteration; if so, Harp attempts to identify

the mutations that are the most effective at eliminating candidates.

It then applies these mutations to the input-shape specification and

enters the next round of iteration.

Special characters: Input characters are particularly important

because they may affect f ’s processing locations—thus Harp at-

tempts to quickly discover a set of special characters Σ1. The key
insight behind such discovery is that that string computations are

generally applied over linear data structures that encode control

and data characters in a single data stream. Consider the following

string:

Different processing primitives may be affected by different charac-

ters. For example, a (to-upper) function converting to upper-case

operates on the entire string, a (split :) function splitting on

“:” will match only the corresponding character, and a “mask *”
function replacing characters with “*” will only match a subset of

characters. These and other examples are shown below:

To discover this set, Harp generates strings with a combination

of letters, numbers, and punctuation symbols. As soon as some of

these inputs start affecting the results, Harp narrows down the set

of symbols by mutating only parts of the input string.

Secondary inputs: Functions in the original library L rarely ac-

cept only strings as their inputs. That is, while the processing targets

the primary input string, other arguments part of the method’s in-

terface need to be provided. For example, a simple count(s, c)
method that counts all occurrences of c in s takes two arguments.

To understand the effect of other inputs to the computation, Harp in-

troduces small DSL describing possible secondary values (Fig. 5). To

maintain acceptable performance, Harp generates only constrained

inputs of these types—both in terms of size and complexity.

These values can be summarized into two broad classes. The first

class is composite values such as lists, objects (maps), and functions.

The DSL includes only two functions, helpful for cases when f is a

higher-order function. These two functions are designed to have

types that are permissive and will likely not throw exceptions. The

first function simply returns its first argument, matching any fold-
like operations; the second function returns its first argument as a

string, covering additional use cases where the first-order function

is expected to return strings—highly likely due to the domain of

Harp. Both functions take a variable number of arguments so as to

be compatible with any invocation in the black-box f .
The second class involves primitive values such as strings, num-

bers, booleans. The value ⊥ corresponds to null or undefined
values; such values are important for understanding the default

parameters or behavior of a computation.

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Supply-Chain Vulnerability Elimination via Active Learning & Regeneration Anonymous submission #59 to ACM CCS 2021, Due Jan. 20, 2021, Seoul, TBD

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Value v := p | {s : v , . . . } | [v , . . .]
| λ(x , . . .).x | λ(x , . . .).str(x)

Primitive p := s | n | b | ⊥
Boolean b := true | false
String s ∈ Σ
Number n ∈ N

Fig. 5: Harp’s secondary-input DSL. This language captures the space

of possible inputs to secondary arguments.

4.4 Mapping Library Structure

This section covers a few details on how Harp regenerates constant

fields and how it discovers the structure of a library.

Constant fields: The majority of string-related functionality is

expected to be exposed as functions. At times, however, L may

contain fields other than functions—e.g., a map of country names

to dial-in prefix codes. In these cases, Harp can copy the structure

to L′ using runtime meta-programming facilities: it traverses L’s
return object to identify and copy such values directly.

In rare cases, these inputs are hidden behind a functional inter-

face that does not allow meta-programming facilities to permeate

through. In these cases, Harp resorts again to active learning—but

its input generation leverages a built-in dictionary of common Eng-

lish words. Harp attempts these words under various combinations

and capitalizations to gain more information about the mapping.

Field discovery: To apply the techniques described earlier, Harp

needs to know how to interact with L and how to feed it inputs. To

answer this, Harp first loads the original library, an operation that

returns an object that contains the values exported by the library.

These values may include functions or other directly accessible

fields. The way Harp interacts with these fields depends on whether

the functionality about to be regenerated has been explicitly named

by the developer using Harp. If it has been named, Harp indexes

only the named functions from the returned object. If there is no

explicit naming involved, Harp uses runtime meta-programming to

traverse the returned object in order to understand and regenerate

the structure of the library. In the former case, the set L in Alg. 1

contains only developer-specified names; in the latter case, the set

contains all names.

5 GUARANTEES

A key correctness guarantee is that the Harp synthesis algorithm

(Alg. 1) will only produce string computations whose behavior is

captured by the DSL in Figure 3. Recall that Algorithm 1 maintains

a current program search size n, set of input-output examples I ,O
obtained from executions of the original library L, and set of pro-

grams P in the Harp DSL. The Harp synthesis algorithm provides

the following key correctness guarantees:

• All programs in P exhibit identical behavior as the original library

L on the list of generated inputs I (the call to pruneSpace in

Algorithm 1 filters out all DSL programs whose behavior differs).

• The set of DSL programs P contains all DSL programs of size n
or less that exhibit identical behavior as the original library L on

the list of generated inputs I .

These guarantees have an immediate corollary:

• If the original library L has the same behavior on all inputs as

some DSL program f ′ and f is of a given size n or less, then

f ∈ P . Moreover, if P = { f } (i.e., f is the only program in P),
then the newly synthesized library L′ has identical behavior as
the original library L on all inputs.

In the limit the algorithm will generate all inputs and consider

all programs in the DSL. More precisely, for any specific input

and program of some size n, there is some finite execution of the

algorithm will generate that input and consider that program. This

fact ensures the following guarantees:

• If the original library L has the same behavior as some DSL

program f (of some size n), then at some finite point in the

execution of Algorithm 1, f ∈ P for all future execution points.

• If the original library L has different behavior than some DSL

program f (of some size n), then at some finite point in the

execution of Algorithm 1, f < P for all future execution points.

These guarantees provide a form of correctness in the limit—as

the algorithm runs, it (1) will eventually (in finite time) find the

correct DSL implementation of the original libraryL if such a correct
program exists in the DSL, and (2) will eventually (in finite time)

filter out any DSL program whose behavior does not match the

original library L on all inputs.

6 REFINEMENTS

We next present several Harp refinements.

6.1 Isolated Learning

To avoid exploitation during ALR, Harp interacts with target li-

braries in an isolated container environment. Harp first launches

a Docker container and imports the library in the context of an

TCP server. Harp then traverses the object returned by the import

statement to create a remote-procedure-call (RPC) shim, which it

then writes in the host file-system.

Harp’s ALR scaffolding infrastructure on the host environment

loads the shim module to interact with the target library. For every

invoked library function, the RPC shim serializes the arguments

and send them to the server executing in the Docker container.

Harp invokes the corresponding function and returns tehe results

back to the shim, which delivers them to Harp running on the host

environment. The channel between the RPC client function and

the corresponding function running in the container is encrypted

using NaCl authenticated encryption primitives [4].

6.2 Synthesis Acceleration

Type Guidance: Harp leverages sound type information to guide

its choice of DSL terms. This is achieved through a few different

means, starting by checking the size and type of the output. If the

output is significantly smaller, then a fold-like reduction is likely to

play a prominent role in the regenerated computation. Additionally,

if the output has a certain type—such as a number or a boolean

value—then that type should featured in the first-order function

used as part of the reduction. Outputs whose size is close to that of

the input string often correspond to add or at constructs.
The study of more complex outputs is also possible, as Harp

can leverage meta-programming available by the source language

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Anonymous submission #59 to ACM CCS 2021, Due Jan. 20, 2021, Seoul, TBD Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

…

…

…
…

(a) Object- ping fragment (b) Custom context creation (c) Context rebinding

HARP
additions

Fig. 6: Harp’s detection of library-external side-effects. Harp’s basic wrapping traverses objects and wraps fields with inline monitors. Harp uses this

transformation to create a new name-to-value context by wrapping all values available in a library’s top-level scope (b). The modified context is bound to the

library by enclosing the module source (half-visible code fragment, in its original indentation) in a closure that redefines all non-local variable names as

closure-local ones, pointing to values from the modified context.

to introspect the value returned by L. This is different from other

domains where active learning is applied through serialization-

deserialization interfaces that encode all values as strings, and

thus obscure the true types of the values returned by a program

fragment. These refinements can prune the synthesis search space

significantly.

Term Weights: Different (classes of) terms from Harp’s DSL

have different likelihoods of appearing in learned DSL programs.

For example, many regenerated string-processing libraries add or

delete characters. Harp uses such likelihood information to guide

synthesis, by generating higher-likelihood terms in the DSL with

higher probability Harp explores the space of candidate programs.

Term weights depend significantly on the types of the inputs

and outputs. For example, if the output is a number then reduction

statements such as fold and built-ins such as × and + are more

likely to appear in the regenerated program.

Parallel Synthesis: Harp’s synthesis features ample opportuni-

ties for parallelization. One opportunity occurs in candidate gener-

ation, in which different worker processes explore disjoint subsets

of the candidate space. Another opportunity occurs in input gener-

ation and testing—i.e., calling the same synthesized candidate on

multiple inputs.

As scaling out involves constant overheads for process spawning

and interprocess communication, scaling out makes sense only after

constant costs are negligible relative to synthesis. This is achieved

by having Harp scale out after a few AST levels have been explored.

6.3 Multi- & Part-Library Regeneration

Multi-library Regeneration: A library L is often implemented

in terms of other libraries L1−n . The L1−n are typically smaller and

simpler than L—often significantly so—and often encodes straight-

forward processing patterns. Common composition patterns in-

clude (1) selection, where different functions (or arguments to these

functions) in L are served by different L1−n , (2) pipelining, where
different processing stages in L come from different libraries in

L1−n , and (3) enhancement, where functions in L are implemented

using functionality from L1−n . Thus, by targeting L1−n Harp can

apply ALR techniques more efficiently than it would in the full L.
To achieve this, Harp leverages its field-discovery (§4.4) and

side-effect detection (§6.4) facilities, coupled with additional inter-

position on import statements themselves. Combined, they allow

Harp to (1) detect cases where a library imports other libraries, and

(2) apply ALR on L1−n . Harp applies ALR on L1−n both individu-

ally in isolation, to extract key properties about their behavior, as

well as to L, to extract information about the interaction between L
and L1−n .

Partial Regeneration: Harp may only partially regenerate L,
if (1) a subset of library functions in L fail regeneration, e.g., due

to side-effects, or (2) if some developer tests—Harp’s very last

stage—fail. Partial regeneration can still be useful to developers in

a variety of ways. For example, the regenerated library can operate

side-by-side with a hardened version of the original library.

fast /
incomplete'

Pr
od

uc
ti

on
 In

pu
t

slow /
complete

✔

✘

✔

Pr
od

uc
ti

on
 O

ut
pu

t

hardened

The latter fast-slow setup combines

improved security properties with ac-

ceptable overall performance. The par-

tially regenerated L′ serves the major-

ity of the calls, and it does so efficiently

and securely. At times, however, L′ re-
ceives input that falls outside its ex-

pected range of operation—but not out-

side that of L. These inputs result into a runtime exception, caught

by a Harp controller component, which then forwards the input

to L. As L now executes with additional hardening in place, it is

significantly less efficient, but still computes the correct output

securely. The exact hardening mechanism and thus its performance

overhead can vary significantly [1, 26, 32, 38, 63], and depends di-

rectly on details related to the threat model—for example native

memory-unsafe binaries require additional care.

6.4 Quick Aborts

Harp implements a --quick-abort option that immediately aborts

the search if the Harp instrumentation detects behaviors such as

file system, environment variable, or network access that are not

observable to clients that work only with values returned from the

target library. Such behavior signals that the original library may

be falling outside Harp’s model of computation, allowing Harp to

quickly abort the ALR process.

←

←

←

…

To record li-

brary accesses to

functionality im-

plemented out-

side the library,

Harp instruments

all names that re-

main free at the

top-level scope

of the library—i.e., ones that are not bound to values in the library.

Harp starts from a few well-known root names—a static list of

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Supply-Chain Vulnerability Elimination via Active Learning & Regeneration Anonymous submission #59 to ACM CCS 2021, Due Jan. 20, 2021, Seoul, TBD

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

names provided by default by the language and runtime environ-

ment. For example, in server-side JavaScript these names include

the global variable table, the require function for importing other

libraries, and the process object for providing access to environ-
ment variables, process arguments, and other information in the

broader environment.

Load-Time Transformations: Modern dynamic languages fea-

ture a module-import mechanism that loads code at runtime as a

string. Harp applies lightweight load-time code transformations on

the string representation of each module, as well as the context to

which it is about to be bound, to insert instrumentation wrappers

into the module before it is loaded.

Harp’s transformations first create a modified copy of a mod-

ule’s runtime context. The context is a name-value mapping for all

free name variables available to the module by default. The modifi-

cations target the values in this mapping—traversing and wrapping

each value with an interposition mechanism that records the access

in a global access table. Harp then binds the modified context to the

module, using a source-to-source transformation that re-defines

names in the context as library-local ones and assigns to them the

values of the modified context.

Harp’s transformations have a common structure that traverses

objects recursively—a base transform wrap, which we review first

(and whose effects are shown in Fig. 6a). The wrap transform takes

an object O and returns a new object O ′, where every field f of O
is wrapped with and replaced by a method f ′. If called, f ′ adds a
record to a global map noting that this particular field f has been

accessed and then passes arguments to f .

Context Creation: To prepare a new context to be bound to a

library being loaded, Harp first creates an auxiliary hash table

(Fig. 6b), mapping names to newly transformed values: names cor-

respond to implicit modules—globals, language built-ins, module-

locals, etc.; transformed values are created by wrapping individual

values in the context to insert instrumentation hooks.

User-defined global variables are stored in a well-known location

(e.g., a map accessible through a global variable named global).
However, traversing the global scope for built-in objects is generally

not possible. To solve this problem, Harp collects such values by

resolving well-known names hard-coded in a list. Using this list,

Harp creates a list of pointers to unmodified values upon startup.

Care must be taken with module-local names such as the mod-

ule’s absolute filename, its exported values, and whether the mod-

ule is invoked as the application’s main module. These names refer

to a different value for each module, and thus attempting to access

the values directly from within Harp’s transformation scope will

fail subtly: the nameswill end up resolving tomodule-local values of

Harp itself. Harp solves this issue deferring these transformations

for the context-binding phase (discussed next).

Context Binding: To bind the code whose context is being trans-

formed with the freshly created context, Harp applies a source-

to-source transformation that wraps the module with a function

closure (Fig. 6c.). By enclosing and evaluating a closure, Harp lever-

ages lexical scoping to inject a non-bypassable step in the variable

name resolution mechanism.

The closure starts by redefining default-available non-local names

as module-local ones, pointing to transformed values that exist in

the newly-created context. It accepts as an argument the customized

context and assigns its entries to their respective variable names in

a preamble consisting of assignments that execute before the rest

of the module. Module-local variables (a challenge outlined earlier)

are assigned the return value of a call to wrap, which will be applied
only when the module is evaluated and the module-local value be-

comes available. Harp evaluates the resulting closure, invokes it

with the custom context as an argument, and applies further wrap
transformations to its return value.

7 IMPLEMENTATION & EVALUATION

In summary, Harp’s evaluation answers the following questions:

• Q1: CanHarp eliminate real vulnerabilities?Harp success-

fully eliminates vulnerabilities in 3 large-scale supply-chain at-

tacks (§7.2–7.4) by learning and regenerating the core function-

ality of the vulnerable library, eliminating any dependency to

dangerous code. To the best of our knowledge, Harp is the first

system that can eliminate these attacks.

• Q2: How long does ALR take? Applied to 17 JavaScript string-

processing libraries (§7.5), Harp learns 14 libraries within a

minute and all under an hour. It also aborts within 5 seconds on

11 other JavaScript libraries that fall outside the string-processing

domain. Harp’s domain-specific performance refinements (§6.2)

improve the runtime performance of ALR by 179.27×.

• Q3: What are the characteristics of regenerated libraries?

The regenerated libraries execute between 2% faster and 7%

slower than the original JavaScript libraries. The regenerated

libraries import nothing and use only basic JavaScript language

primitives. The original libraries, in contrast, have access to

the entire JavaScript ecosystem, including standard JavaScript

and Node.js libraries, the file system, the network, environment

variables, and process arguments.

• Q4: Is ALR applicable outside JavaScript? Applying Harp

on 5 native string-processing libraries written in C/C++ and

imported as binary modules, successfully regenerates all of them

in JavaScript (Appendix C). The regenerated libraries incur a

maximum overhead of 1% and enjoy memory and type safety

benefits not present in the original libraries.

7.1 Methodology

Workloads: To investigate Q1, we obtained 3 widely-publicized

software supply-chain security incidents from the JavaScript ecosys-

tem: (i) event-stream [40, 59], a popular library that was modified

to steal bitcoins from specific Bitcoinwallets (§7.2), (ii) left-pad [36,
67], a popular library replaced by a no-op after a package name

dispute, breaking thousands of projects including Facebook and

PayPal (§7.3); (iii) string-compare [10], where two different ver-

sions of the same string comparison library—one benign and one

malicious—appear in the same dependency tree (§7.4).

To investigate Q2 and Q3, we obtained 14 additional JavaScript

string processing libraries from npm with the help of an experi-

enced JavaScript developer and a senior undergraduate student.

The student used the npm’s search feature to search for libraries

using a variety of string-processing terms such as “padding”, “strip,”

9

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Anonymous submission #59 to ACM CCS 2021, Due Jan. 20, 2021, Seoul, TBD Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

and “change case.” For each term, the student sorted the list of re-

turned libraries by popularity [43] to inspect the first five pages of

search results and select the library that provided the most complete

corresponding functionality. We note that this process excludes

duplicates—for example, the student found and discarded more than

10 left-pad libraries with similar or identical functionality. This

phase produced 17 unique string-processing libraries that are used

pervasively and can affect a large part of the ecosystem [70]: collec-

tively, these libraries are directly imported by several applications

and transitively imported via other dependencies by more than

100K applications. The phase also produced 11 libraries that were

misclassified as string processing libraries. We applied Harp to all

28 libraries.

To answer Q4, we obtained C/C++ libraries by searching GitHub

using the same search terms as for the JavaScript libraries. Since

many of these libraries did not have tests or client programs, we

opted for C/C++ libraries with JavaScript bindings to check compat-

ibility via tests and client programs from the JavaScript ecosystem.

This search process produced five libraries.

Evaluation metrics: We evaluate security improvements qualita-

tively and quantitatively. For known attacks (Q1), we first used the

original (compromised) library to reproduce the attack. We then

inferred and regenerated the original library and replaced the orig-

inal library with the regenerated version. We confirmed that the

regenerated version eliminated the attack. For all libraries (Q2–5),

we report the privilege reduction achieved after applying Harp.

This quantitative security metric was developed recently [65] and

corresponds to a ratio α/t , where α is the count of all APIs that are

not invocable by the library any more, due to the defense being

applied, and t is the total count of APIs made available to a library

by default by the combined built-in or third-party libraries.

We evaluate the correctness of regenerated libraries (Q3, Q5) us-

ing a combination of developer tests, client libraries or applications,

and manual inspection. We ran the developer-provided test suites

for the libraries and verified that the regenerated libraries provide

correct results. We also imported the regenerated libraries into

the top 10 client libraries or applications that directly import the

original libraries and ran the test suites for these client libraries

or applications. Finally, we manually inspected the regenerated

code to confirm that it correctly implements the intended correct

behavior of the original version.

For the learning time (Q2), we report wall-clock time after the

call npm-install up to the point where Harp either (1) aborts,

reporting intractability, (2) timeouts, failing to synthesize a library,

or (3) succeeds, regenerating a library and its appropriate bindings.

We set the timeout limit to 12 hours. We measured the runtime

performance of regenerated-libraries (Q4, Q5) using a combination

of developer tests and synthetic workloads operating in tight loops.

We repeated all performance-related experiments 100 times and

report averages.

Implementation Details: Harp currently works with black-box

libraries available in JavaScript, Python (not shown here; reported in

the extended version [blind]), and binary object files developed, for

example, in C/C++ andwrapped as native add-ons.We expect native

add-ons to be wrapped by some form of language-level interface

such Node’s NaN or N-API and Python’s ctypes or CFFI. Harp’s

ALR components, including the synthesis and DSL, are written

in JavaScript. The base set of DSL terms as well as the resulting

programs are compiled to their respective language using a small

Python compiler: the compiler currently can emit JavaScript and

Python programs, which are then executed using the interpreter of

the respective language. The regenerated programs link against a

small utility library that provides runtime support, ported once for

each target language supported by Harp.

Harp currently has a few limitations. First, it does not sup-

port libraries whose functions mutate built-in, prototype, or other

objects—such as String.prototype in JavaScript. Additionally,

Harp’s input generation algorithm does not generate non-ASCII

strings or ones with special—possibly hierarchical—structure such

as JSON, HTML, and CSS; generating the latter without any addi-

tional domain information would be impractical.

Software andHardware Setup: All experimentswere conducted

on a modest server with 4GB of memory and 2 Intel Core2 Duo

E8600 CPUs clocked at 3.33GHz, running a Linux kernel version

4.4.0-134. The JavaScript setup uses Node.js v12.19, bundled with

V8 v7.8.279.23, LibUV v1.39.0, and npm version v6.14.8; the Python

setup uses CPython 3.7.5. To perform timeline-accurate supply-

chain attacks, we set up a private registry using verdaccio [62]

available only to the server running the experiments.

7.2 Use Case: Event-Stream

The event-stream incident [40, 59], discussed extensively ear-

lier (§2), introduced a malicious dependency harvesting Bitcoin

account credentials through a popular stream-processing library.

This dependency, flatmap-stream, targeted a very specific pro-

duction environment of a cryptocurrency application; other envi-

ronments were not affected.

Security: We reconstruct the malicious library and payloads from

a variety of sources [20, 44, 51]. The library applies several checks

to verify it runs on production, as part of a specific application, and

as part of a specific build. If all these conditions hold, it then writes

to the file-system. Harp’s active learning phase does not infer any

file-system accesses; this is primarily because there are no such

accesses during the learning phase, and secondarily because Harp

does not model them. As a result, Harp regenerates an exploit-free

version of the library, confirmed by manual inspection. It makes

no use of built-in APIs, achieving a privilege-reduction of 332×.

Performance & correctness: Harp takes on average 1.4 sec-

onds to complete flatmap-stream’s active learning and regen-

eration. We manually inspected the regenerated code and found

it implements the full functionality of the original library. The

original library does not come with any test cases and the ver-

sion of event-stream that uses the malicious flatmap-stream
version has been removed permanently from npm. We therefore

manually modified event-stream commit e316336, introducing
flatmap-stream to import and use the regenerated flatmap-stream,
and apply event-stream’s tests. All 14 (100%) of event-stream’s
tests pass successfully: 13/14 tests are not affected by the flatmap-
stream addition, and 1/14 that tests flatmap-stream passes suc-
cessfully. Applying the regenerated flatmap-stream to an array

of 1000 elements over 10K runs takes 48.99 seconds—an overhead

of about 107µs per run over the performance of the original library.

10

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Supply-Chain Vulnerability Elimination via Active Learning & Regeneration Anonymous submission #59 to ACM CCS 2021, Due Jan. 20, 2021, Seoul, TBD

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

7.3 Use Case: Left-Pad

The left-pad incident [36, 67] was caused by unpublishing a pop-

ular JavaScript library, effectively replacing it permanently with a

No-Op. While left-pad itself was an 11-line moderately-popular

string-padding function, it was used by many popular projects such

as React and Babel. The unpublishing corrupted production envi-

ronments, denying them the ability to revert to an older version of

the library. As a result, the incident affected more than one third

of the Node.js ecosystem, and led to significant changes in the

un-publishing policies of public library registries.

Security: We apply Harp to an identical library built by npm
as a response to the incident, replacing the original left-pad li-

brary copied to our local registry (§7.1). Harp regenerates all of

left-pad’s functionality, fully eliminating the dependency. As a

result, left-pad’s tests still succeed after we unpublish left-pad
from our local registry because they no longer depend on the origi-

nal left-pad module. The regenerated left-pad makes no use of

built-in APIs, resulting in a privilege-reduction score of 332×.

Performance & correctness: Harp completes left-pad’s ac-
tive learning and regeneration in an average of 3.6 seconds. We

manually inspect the regenerated code and confirm it implements

left-pad’s full functionality. We apply the full test suite (35 tests)

from left-pad’s repository, all of which (100%) pass successfully.

One test is particularly interesting as it supplies ill-defined input to

trigger left-pad’s default behavior, by providing a padding length

of false, it invokes one of left-pad’s padding behaviors that

Harp learned through other false-y values. The runtime perfor-

mance of the regenerated left-pad on 10K runs is 45.66 seconds—

an overhead of about 20µs per run over the performance of the

original library.

7.4 Use Case: String-Compare

The string-compare attack involves two versions of a single li-

brary in the same codebase [10]. The earlier version of this library,

used as part of a sort function is benign. A later version, used in

the authentication module, is malicious: if provided the (authen-

tication) string gbabWhaRQ, it access the file system of the server

running the program.

Security: We apply Harp on both versions of string-compare
library. The regenerated version is identical between the two cases,

and does not contain any side-effects—nor the check that launches

the attack in the second case. Harp eliminates the string-compare
dependency from both sort and auth, replacing it with vulnerability-
free code. The regenerated string-compare makes no use of built-

in APIs, resulting in a privilege-reduction score of 332×.

Performance& correctness: Harp completes string-compare’s
active learning and regeneration in an average of 0.7 seconds. We

manually inspect the regenerated code and confirm it implements

string-compare’s full functionality. As string-compare comes

with no test cases, we apply the test cases of the sort function over a
shuffled version of Ubuntu’s wamerican dictionary words file (102K
elements); all 3 (100%) test cases pass. The runtime performance of

10K sort iterations using the regenerated string-compare takes
46.01 seconds—an overhead of about 41µs per run over the perfor-

mance of the original library.

7.5 Applying Harp to More Libraries

In this section, we apply Harp to 25 JavaScript libraries—17 string-

processing libraries and 11 other libraries—and 5 C/C++ libraries

collected from GitHub.

Table 1 shows results for 17 JavaScript string-processing libraries.

The statistics columns D1–D3 count the number of weekly down-

loads, direct dependents, and total dependents of these libraries as

reported by the npm tool: collectively, these libraries can affect a

significant fraction of the ecosystem—they total 20.22M downloads

per week, are directly depended upon by a total of 4,320 libraries,

and are indirectly depended upon by more than 117,738 libraries

and applications. The Learning columns t1 and t2 show the time it

took Harp to apply active learning and regeneration; t1 is full Harp,
whereas t2 does not include Harp’s performance refinements (§6).

The Regeneration columns Performance and Correctness show the

characteristics of the regenerated library with respect to the origi-

nal: Performance is measured using 10K iterations of several tests;

and Correctness is measured by running all the tests of the origi-

nal library and 10 client-libraries against the regenerated library,

followed by manual inspection.

Learning: Harp’s active learning and regeneration takes between

0.7 seconds and 50.9 minutes (avg.: 204.83 seconds) to complete,

with 14 out of 17 libraries regenerated within a minute and 16

out of 17 libraries regenerated within 145 seconds (2.4 minutes).

The regenerated camel-case library stands out in terms of size,

containing 8 computational statements, two of which are split
operators, taking 3059 seconds (50.9 minutes) to regenerate.

Harp’s performance refinements (§6) offer significant improve-

ments. Without any refinements, Harp takes at least 179.27× longer.

This value is a conservative estimate because Harp reaches a time-

out limit of 12 hours for 7 out of 17 libraries. This speedup includes

a 1.1× slowdown for 5 small libraries that are penalized by Harp’s

refinements. As the regeneration of these libraries remains within

a few seconds, their slowdown is considered acceptable—especially

given the overall speedup of long-running regenerations.

In terms of code coverage, the input generation algorithm exer-

cises 100% of library code for 11 out of 17 libraries. For the remaining

six libraries, the majority of the functionality not exercised is re-

lated to exception handling. In the case of decamelize (80%), Harp
does not exercise four lines handling erroneous input (non-string

arguments), and 11 lines related to a flag preserving consecutive

upper case. In the case of flatmap-stream (62.2%), Harp does not

exercise a subset of the stream-specific functionality—stream pause,
resume, destroy and end handlers—that are part of superclass func-
tionality. Harp also does not exercise exception handlers in the

write method, which are meant to handle errors propagating up

from the stream consumer. In the case of repeat-string (95.45%),

Harp misses an exception-raising statement meant to cover cases

where the first argument is not a string. The trim library (33.3%)

first checks if the input string’s prototype includes a trim method

and if so it invokes it; otherwise, implements a left and right trim

by invoking other methods—but Harp’s primary inputs always sup-

port trim as part of the string prototype. In the case of upper-case
(44%), Harp misses all the locale-specific code (confirmed by the

tests). In the case of zero-fill (80%), Harp misses a branch for

11

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

Anonymous submission #59 to ACM CCS 2021, Due Jan. 20, 2021, Seoul, TBD Anon.

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

Tab. 1: Applying Harp to JavaScript libraries. Columns D1−3 show weekly downloads, direct dependents, and total dependents; columns t1 and t2 show

the time it took to complete ALR, with and without refinements; column Coverage shows the percentage of the source code covered by the input generation

algorithm; other columns show the characteristics of the regenerated libraries compared to the original libraries.

Popularity Learning Regeneration

Library D1 D2 D3 t1 (s) t2 (s) Cov/ge (%) Perf/nce (s) (%) Correctness (%)

camel-case 126K 842 1314 3059 >12h 100 10.15 (5.6%) 9/9 (100%)

constant-case 9.3M 498 1484 22 >12h 100 9.86 (3.8%) 9/9 (100%)

decamelize 3.8M 110 249 4 14340 80 9.61 (2.9%) 40/40 (100%)

flatmap-stream 15.1M 326 832 1.4 >12h 71.21 48.99 (2.2%) 14/14 (100%)

left-pad 83K 42 175 3.6 1.3 100 45.66 (0.4%) 35/35 (100%)

no-case 15.1M 326 832 28 >12h 100 9.89 (5.3%) 31/31 (100%)

pascal-case 5.9M 89 331 145 >12h 100 10.15 (6.4%) 8/8 (100%)

repeat-string 2.8M 195 472 19 8 95.45 9.18 (-1.6%) 28/30 (93.3%)

sentence-case 43.1K 26 68 129 >12h 100 10.02 (4.9%) 7/7 (100%)

snake-case 1.6M 2.2K 832 36 >12h 100 9.95 (3.4%) 8/8 (100%)

string-compare 2.2M 71 1651 0.7 1.2 100 46.01 (0.9%) 3/3 (100%)

trim-left 6.8M 430 2979 3 3.5 100 9.36 (0.3%) 4/4 (100%)

trim-right 1.8M 43 1636 2 3.2 100 9.43 (2.9%) 4/4 (100%)

trim 1.5M 219 332 21 111 33.33 9.45 (1.2%) 4/4 (100%)

upper-case 5.4M 17 1452 3 1.9 44.44 9.38 (0.0%) 4/6 (66.7%)

write-pad 2.03M 232 1386 3 1.4 100 9.26 (0.9%) 1/10 (100%)

zero-fill 9.7M 66 2463 3 1.6 80 9.27 (-0.9%) 11/16 (68.8%)

Min 43.1K 17 68 0.7 1.2 33.33 (-1.6%) (66.7%)

Max 20.3M 2200 2979 3K >12h 100 (6.4%) (100.0%)

Avg 6.22M 411 1177 204.83 >10.2h 86.04 (2.3%) (95.8%)

when the second argument (the “filler” string) is not provided—in

which case the library returns a partially applied function.

Performance: To understand the runtime performance of regen-

erated libraries, we apply them on the tests of the original libraries

in tight loops of 10K iterations. Their performance is between -1.6%

(speedup) and 6.4% (slowdown), with an average of 2.3%. Profil-

ing shows that the overhead comes from Harp’s complex pattern

matching primitives which compile down to the language’s regular-

expression language (REL). REL is in fact not regular, as it supports

back-references and other non-regular constructs, and thus does

not perform as efficiently as the simpler string-matching constructs

found in the original libraries.

Correctness: Out of 17 libraries, 14 are fully regenerated, pass-

ing 100% of developer-provided and client-application tests. Three

libraries are partially regenerated, passing between 4/6 (66.7%)

and 28/30 (99.3%) of tests. Two of repeat-string’s tests are de-
signed to generate exceptions—not expressible in Harp’s DSL. Two

of upper-case’s tests are locale-dependent, with string locales

that fall outside Harp’s input generation algorithm. Finally, 5 of

zero-fill’s tests expect a partially evaluated function, which is

currently not expressible in Harp’s DSL.

8 RELATEDWORK

Input-Output Synthesis: Program synthesis and programming

by example automatically generate programs that satisfy a given set

of input-output examples [2, 15, 17, 21, 46, 47, 57, 66]. Harp differs

in that it works with an existing component as opposed to a fixed

set of input-output examples and interacts with the component

to build a model of its behavior. The goal is to eliminate depen-

dencies and vulnerabilities by replacing the original version with

the regenerated version, without requiring developers to provide

input-output examples manually.

Component-based synthesis [14, 16, 31, 55] aims to generate a

program consisting of library calls to a provided API. It synthesizes

code for making library calls by executing the candidate program on

a set of test cases. Harp’s approach does not depend on knowledge

of components or interfaces and generates custom inputs to infer

library properties rather than using test cases.

Active Learning: Active learning is a classical topic in machine

learning [53]. In the context of program inference, it includes learn-

ing (and generating) database interfaces, loop-free programs, or

declarative logic programs [21, 48, 56]. Harp, in contrast, works

in tandem with existing libraries to synthesize vulnerability-free

replacements that implement the same functionality with respect

to the original library and perform comparably to it—and targets

string processing libraries. Harp is the first active learning and re-

generation system to successfully eliminate software supply-chain

vulnerabilities in widely used libraries.

Component Protection: Runtime component protection tech-

niques provide monitoring, instrumentation, and policy enforce-

ment, typically through sandboxing, wrapping, or transformation [1,

18, 23, 30, 33–35, 37, 50, 52, 61]. Harp differs in that it replaces the

library with a regenerated version instead of executing the library

in a sandbox or wrapping the library to dynamically enforce a

security policy. The regenerated library therefore executes with

no runtime instrumentation overhead and requires no sandboxing.

We note that, to avoid exploitation during inference, Harp uses

a combination of sandboxing and wrapping during inference. Un-

like sandboxing or wrapping, Harp also protects against library

deletion attacks.

12

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

Supply-Chain Vulnerability Elimination via Active Learning & Regeneration Anonymous submission #59 to ACM CCS 2021, Due Jan. 20, 2021, Seoul, TBD

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

Software Debloating: ALR is also related to software debloat-

ing [3, 19, 24, 25], a technique that lowers the potential for vulnera-

bilities by eliminating unused code in a program. Like debloating,

Harp can eliminate unused code in the inferred library. Unlike

debloating, which prunes computation in the original library but

leaves unpruned code intact, Harp replaces the original library with

a regenerated version that is guaranteed to conform to a safe model

of computation. Harp can also discard potentially malicious code

in the regeneration, including code that executes during inference

but does not affect the client-visible behavior of the inferred library.

Vulnerability Detection: Prior work on static [8, 12, 13, 22, 60]

and dynamic [45, 68] analysis can detect malicious code at devel-

opment or production time. Harp does not attempt to detect a

vulnerability—rather, it assumes libraries as a potential liability

with stealthy Turing-complete vulnerabilities, and rewrites them

into functionally equivalent, side-effect-free versions.

9 DISCUSSION & LIMITATIONS

Synthesis Limitations: There are desirable guarantees that Al-

gorithm 1 does not satisfy. First, if the behavior of the original

library L does not correspond to any program in the DSL, there

is no guarantee that the algorithm will determine this fact in any

finite time—it is possible that the difference in behavior will be

exposed only by an input that the algorithm has yet to consider.

Second, if the behavior of the original library L does correspond to

some program in the DSL, there is no guarantee that the algorithm

will find that DSL program in any finite time—it is possible that the

program is larger than programs that the algorithm has considered.

So given a set of DSL programs P at some point in execution

of Algorithm 1, what must be true of the relationship between the

DSL programs f ∈ P and the original library L? First, P and all

f exhibit identical behavior on all considered inputs I . Second, if
there is some program f of size n or less that has the same behavior

as L on all inputs, then f ∈ P . If additionally P = { f }, then the

algorithm will return a new library L′ that has identical behavior
as the original library L. There are two key preconditions here

which Algorithm 1 does not check: (1) there is some DSL program

f has identical behavior on all inputs as the original library L, and
(2) this DSL program is of size n or less for some known n. These
preconditions may come, for example, from the general domain

knowledge of the programmer.

Attacks on outputs: As outlined earlier (§3), the primary targets

of active library learning and regeneration are (1) Turing-complete

side-effectful attacks—e.g., ones targeting the file system, global

variables, the module system, process arguments, or environment

variables, (2) attacks via low-level, memory-unsafe, and type-unsafe

code such as ones typical in C and C++ code. Could ALR additionally

protect against attacks targeting the output of a library function?

For attacks targeting function outputs, there are two broad pos-

sibilities depending on the malicious behavior. If the malicious be-

havior is hidden and therefore not exposed during testing/normal

use, Harp will not learn the malicious behavior and thus the re-

generated code will not contain the corresponding vulnerability. If,

however, the malicious behavior is exposed during testing/normal

use, Harp would either (1) determine that the observed behavior

is outside the scope of the DSL and reject the library, or (2) learn

and regenerate the behavior. In the latter case, Harp is relying

on the exposure of the malicious behavior during testing/normal

use to detect and eliminate the behavior—i.e., we would expect the

behavior to be detected by the developer during development and

before deployment. We anticipate that, at least for string processing

programs, almost all such malicious behaviors will be outside the

scope of the Harp DSL.

Generalizing ALR: Active learning and regeneration is a black-

box program inference approach that fixes (1) a specific computa-

tional domain (SCD) such as string processing, tensor operators,

database interfaces, (2) a corresponding language (DSL) for model-

ing computations in that domain, and (3) an input generation algo-

rithm (IGA) for interacting with the black-box computation. These

three elements are interlinked and are designed to complement

each other. For example, the DSL is designed to enable differential

testing, using the IGA to guide efficient inference—by inferring

the existence or absence of certain DSL terms in the regenerated

programs while minimizing ambiguity.

An active learning and regeneration system such as Harp is

an instantiation of these three elements (SCD, DSL, IGA) for a

particular domain. We do not expect a single system to be expanded

to capture all or even a large range of computation of interest. Such

an expansion can quickly result in general computations and thus

quickly hit known intractability limits.

Applying ALR to further domains: Instead, we anticipate mul-

tiple active learning and regeneration systems, each targeting a

certain class of libraries. Harp exemplifies this approach for string

computations—a central, widely used class of computations. Other

classes of computation and associated DSLs include: arithmetic-

operation libraries, linear algebra and tensor operations, key-value

operations, spreadsheet-style computations, components that ac-

cess SQL databases, blockchain smart contracts, and stream-based

parallelizing combiners.

The technique has been applied successfully in some of these

domains—e.g., programs and program fragments that access state-

ful key-value stores [49], applications that access relational SQL

databases [54], binary data parsing and transformation, [9], and

parallel and distributed synthesis of Unix shell commands [64].

Harp is the first active learning and regeneration system targeting

security problems in the context of software supply-chains.

10 CONCLUSION

Large-scale dependency incidents such as event-stream havemade

supply-chain attacks a critical security concern. This paper presents

a new approach for addressing this concern: active library learn-

ing and regeneration (ALR) to infer and regenerate the client-

observable functionality of a black-box software dependency. ALR

replaces a third-party software dependency with one that is auto-

matically regenerated from a domain-specific program in which the

target class of attacks cannot be expressed. We demonstrate ALR

techniques in Harp, a prototype system for inferring and regen-

erating components that implement string computations. Applied

to JavaScript and C/C++ libraries, Harp completes regeneration in

under an hour, regenerates safe versions that are fully compatible

with the original library and exhibit minimal to no performance

overhead.

13

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

Anonymous submission #59 to ACM CCS 2021, Due Jan. 20, 2021, Seoul, TBD Anon.

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

REFERENCES

[1] Pieter Agten, Steven Van Acker, Yoran Brondsema, Phu H. Phung, Lieven Desmet,

and Frank Piessens. 2012. JSand: Complete Client-side Sandboxing of Third-party

JavaScript Without Browser Modifications. In Proceedings of the 28th Annual

Computer Security Applications Conference (ACSAC ’12). ACM, New York, NY,

USA, 1–10. https://doi.org/10.1145/2420950.2420952

[2] Rajeev Alur, Rastislav Bodik, Garvit Juniwal, Milo MK Martin, Mukund

Raghothaman, Sanjit A Seshia, Rishabh Singh, Armando Solar-Lezama, Emina

Torlak, and Abhishek Udupa. 2013. Syntax-guided synthesis. In 2013 Formal

Methods in Computer-Aided Design. IEEE, 1–8.

[3] Babak Amin Azad, Pierre Laperdrix, and Nick Nikiforakis. 2019. Less is

more: quantifying the security benefits of debloating web applications. In 28th

{USENIX} Security Symposium ({USENIX} Security 19). 1697–1714.

[4] Daniel J Bernstein, Bernard Van Gastel, Wesley Janssen, Tanja Lange, Peter

Schwabe, and Sjaak Smetsers. 2014. TweetNaCl: A crypto library in 100 tweets. In

International Conference on Cryptology and Information Security in Latin America.

Springer, 64–83. https://tweetnacl.cr.yp.to/

[5] Oscar Bolmsten. 2017. Malicious Package: crossenv and other 36 malicious

packages. https://snyk.io/vuln/npm:crossenv:20170802 Accessed: 2019-03-19.

[6] Benjamin Byholm, Rod Vagg, and NAN contributors. 2018. Native Abstractions

for Node. https://www.npmjs.com/package/nan Accessed: 2020-06-11.

[7] Mircea Cadariu, Eric Bouwers, Joost Visser, and Arie van Deursen. 2015. Tracking

known security vulnerabilities in proprietary software systems. In Software

Analysis, Evolution and Reengineering (SANER), 2015 IEEE 22nd International

Conference on. IEEE, 516–519.

[8] Stefano Calzavara, Michele Bugliesi, Silvia Crafa, and Enrico Steffinlongo. 2015.

Fine-Grained Detection of Privilege Escalation Attacks on Browser Extensions. In

Programming Languages and Systems - 24th European Symposium on Programming,

ESOP 2015, Held as Part of the European Joint Conferences on Theory and Practice

of Software, ETAPS 2015, London, UK, April 11-18, 2015. Proceedings (Lecture Notes

in Computer Science), Jan Vitek (Ed.), Vol. 9032. Springer, 510–534. https://doi.

org/10.1007/978-3-662-46669-8_21

[9] José P. Cambronero, Thurston H. Y. Dang, Nikos Vasilakis, Jiasi Shen, Jerry

Wu, and Martin C. Rinard. 2019. Active Learning for Software Engineering. In

Proceedings of the 2019 ACM SIGPLAN International Symposium on New Ideas,

New Paradigms, and Reflections on Programming and Software (Onward! 2019).

Association for Computing Machinery, New York, NY, USA, 62–78. https://doi.

org/10.1145/3359591.3359732

[10] David Bryant Copeland. 2019. The Frightening State of Security Around NPM

Package Management. https://bit.ly/3pID2h1 Accessed: 2020-12-10.

[11] Ruian Duan, Omar Alrawi, Ranjita Pai Kasturi, Ryan Elder, Brendan Saltaformag-

gio, and Wenke Lee. 2021. Towards Measuring Supply Chain Attacks on Package

Managers for Interpreted Languages. NDSS.

[12] Aurore Fass, Michael Backes, and Ben Stock. 2019. JStap: A Static Pre-Filter for

Malicious JavaScript Detection. In Proceedings of the 35th Annual Computer Secu-

rity Applications Conference (ACSAC ’19). Association for Computing Machinery,

New York, NY, USA, 257–269. https://doi.org/10.1145/3359789.3359813

[13] Aurore Fass, Robert P. Krawczyk, Michael Backes, and Ben Stock. 2018. JaSt: Fully

Syntactic Detection ofMalicious (Obfuscated) JavaScript. InDetection of Intrusions

and Malware, and Vulnerability Assessment, Cristiano Giuffrida, Sébastien Bardin,

and Gregory Blanc (Eds.). Springer International Publishing, Cham, 303–325.

[14] Yu Feng, Ruben Martins, Yuepeng Wang, Isil Dillig, and Thomas W Reps. 2017.

Component-based synthesis for complex APIs. In Proceedings of the 44th ACM

SIGPLAN Symposium on Principles of Programming Languages. 599–612.

[15] John K Feser, Swarat Chaudhuri, and Isil Dillig. 2015. Synthesizing data structure

transformations from input-output examples. In ACM SIGPLAN Notices, Vol. 50.

ACM, 229–239.

[16] Joel Galenson, Philip Reames, Rastislav Bodik, Björn Hartmann, and Koushik

Sen. 2014. Codehint: Dynamic and interactive synthesis of code snippets. In

Proceedings of the 36th International Conference on Software Engineering. 653–663.

[17] Sumit Gulwani. 2011. Automating string processing in spreadsheets using input-

output examples. In ACM Sigplan Notices, Vol. 46. ACM, 317–330.

[18] Daniel Hedin, Alexander Sjösten, Frank Piessens, and Andrei Sabelfeld. 2017. A

principled approach to tracking information flow in the presence of libraries. In

International Conference on Principles of Security and Trust. Springer, 49–70.

[19] Kihong Heo, Woosuk Lee, Pardis Pashakhanloo, and Mayur Naik. 2018. Effective

program debloating via reinforcement learning. In Proceedings of the 2018 ACM

SIGSAC Conference on Computer and Communications Security. 380–394.

[20] hugeglass. 2018. GitHub Repository for flatmap-stream. https://git.io/Jtcdi

Accessed: 2020-12-18.

[21] Susmit Jha, Sumit Gulwani, Sanjit A Seshia, and Ashish Tiwari. 2010. Oracle-

guided component-based program synthesis. In Proceedings of the 32nd ACM/IEEE

International Conference on Software Engineering-Volume 1. ACM, 215–224.

[22] N. Jovanovic, C. Kruegel, and E. Kirda. 2006. Pixy: a static analysis tool for

detecting Web application vulnerabilities. In 2006 IEEE Symposium on Security

and Privacy (S P’06). 6 pp.–263. https://doi.org/10.1109/SP.2006.29

[23] Yoonseok Ko, Tamara Rezk, and Manuel Serrano. [n. d.]. SecureJS Compiler:

Portable Memory Isolation in JavaScript. In SAC 2021-The 36th ACM/SIGAPP

Symposium On Applied Computing.

[24] Igibek Koishybayev and Alexandros Kapravelos. 2020. Mininode: Reducing

the Attack Surface of Node.js Applications. In 23rd International Symposium on

Research in Attacks, Intrusions and Defenses ({RAID} 2020).

[25] Hyungjoon Koo, Seyedhamed Ghavamnia, and Michalis Polychronakis. 2019.

Configuration-Driven Software Debloating. In Proceedings of the 12th European

Workshop on Systems Security. 1–6.

[26] Benjamin Lamowski, Carsten Weinhold, Adam Lackorzynski, and Hermann

Härtig. 2017. Sandcrust: Automatic Sandboxing of Unsafe Components in Rust.

In Proceedings of the 9th Workshop on Programming Languages and Operating

Systems (PLOS’17). ACM, New York, NY, USA, 51–57. https://doi.org/10.1145/

3144555.3144562

[27] Tobias Lauinger, Abdelberi Chaabane, Sajjad Arshad, William Robertson, Christo

Wilson, and Engin Kirda. 2017. Thou Shalt Not Depend on Me: Analysing the

Use of Outdated JavaScript Libraries on the Web. (2017).

[28] SS Jeremy Long. 2015. OWASP Dependency Check. (2015).

[29] Michael Maass. 2016. A Theory and Tools for Applying Sandboxes Effectively. Ph.D.

Dissertation. Carnegie Mellon University.

[30] Jonas Magazinius, Daniel Hedin, and Andrei Sabelfeld. 2014. Architectures for

inlining security monitors in web applications. In International Symposium on

Engineering Secure Software and Systems. Springer, 141–160.

[31] David Mandelin, Lin Xu, Rastislav Bodík, and Doug Kimelman. 2005. Jungloid

mining: helping to navigate the API jungle. ACM Sigplan Notices 40, 6 (2005),

48–61.

[32] Marcela S Melara, David H Liu, and Michael J Freedman. 2019. Pyronia: Redesign-

ing Least Privilege and Isolation for the Age of IoT. arXiv preprint arXiv:1903.01950

(2019).

[33] Leo A Meyerovich and Benjamin Livshits. 2010. ConScript: Specifying and

enforcing fine-grained security policies for Javascript in the browser. In 2010

IEEE Symposium on Security and Privacy. IEEE, 481–496.

[34] James Mickens. 2014. Pivot: Fast, synchronous mashup isolation using generator

chains. In 2014 IEEE Symposium on Security and Privacy. IEEE, 261–275.

[35] Mark S Miller, Mike Samuel, Ben Laurie, Ihab Awad, and Mike Stay. 2009. Caja:

Safe active content in sanitized JavaScript, 2008. Google white paper (2009).

[36] Paul Miller. 2016. How an irate developer briefly broke JavaScript. https:

//bit.ly/36CkBDI Accessed: 2020-12-10.

[37] MariusMusch, Marius Steffens, Sebastian Roth, Ben Stock, andMartin Johns. 2019.

ScriptProtect: mitigating unsafe third-party javascript practices. In Proceedings

of the 2019 ACM Asia Conference on Computer and Communications Security.

391–402.

[38] Shravan Narayan, Craig Disselkoen, Tal Garfinkel, Nathan Froyd, Eric Rahm,

Sorin Lerner, Hovav Shacham, and Deian Stefan. 2020. Retrofitting Fine Grain Iso-

lation in the Firefox Renderer. In 29th {USENIX} Security Symposium ({USENIX}

Security 20). 699–716.

[39] Nick Nikiforakis, Luca Invernizzi, Alexandros Kapravelos, Steven Van Acker,

Wouter Joosen, Christopher Kruegel, Frank Piessens, and Giovanni Vigna. 2012.

You are what you include: large-scale evaluation of remote javascript inclusions.

In Proceedings of the 2012 ACM conference on Computer and communications

security. 736–747.

[40] npm, Inc. 2018. Details about the event-stream incident. https://blog.npmjs.org/

post/180565383195/details-about-the-event-stream-incident Accessed: 2018-12-

18.

[41] npm, Inc. 2019. Malicious Package: stream-combine. https://www.npmjs.com/

advisories/774 Accessed: 2019-01-25.

[42] npm, Inc. 2019. Malicious Package: stream-combine. https://www.npmjs.com/

advisories/765 Accessed: 2019-01-25.

[43] npm, Inc. 2020. Node Package Manager. https://www.npmjs.com/search?q=

string&ranking=popularity

[44] Jarrod Overson. 2018. BadJS—Malicious JavaScript found in the wild: Event-

Stream. https://badjs.org/posts/event-stream/ Accessed: 2020-12-18.

[45] Giancarlo Pellegrino and Davide Balzarotti. 2014. Toward Black-Box Detection

of Logic Flaws in Web Applications.

[46] Nadia Polikarpova, Ivan Kuraj, and Armando Solar-Lezama. 2016. Program

synthesis from polymorphic refinement types. ACM SIGPLAN Notices 51, 6

(2016), 522–538.

[47] Mohammad Raza and Sumit Gulwani. 2018. Disjunctive Program Synthesis: A

Robust Approach to Programming by Example. In Thirty-Second AAAI Conference

on Artificial Intelligence.

[48] Martin C. Rinard, Jiasi Shen, and Varun Mangalick. [n. d.]. Active learning for

inference and regeneration of computer programs that store and retrieve data.

In Proceedings of the 2018 ACM SIGPLAN International Symposium on New Ideas,

New Paradigms, and Reflections on Programming and Software, Onward! 2018,

Boston, MA, USA, November 7-8, 2018, Elisa Gonzalez Boix and Richard P. Gabriel

(Eds.).

[49] Martin C. Rinard, Jiasi Shen, and Varun Mangalick. 2018. Active Learning for

Inference and Regeneration of Computer Programs That Store and Retrieve Data.

14

https://doi.org/10.1145/2420950.2420952
https://tweetnacl.cr.yp.to/
https://snyk.io/vuln/npm:crossenv:20170802
https://www.npmjs.com/package/nan
https://doi.org/10.1007/978-3-662-46669-8_21
https://doi.org/10.1007/978-3-662-46669-8_21
https://doi.org/10.1145/3359591.3359732
https://doi.org/10.1145/3359591.3359732
https://bit.ly/3pID2h1
https://doi.org/10.1145/3359789.3359813
https://git.io/Jtcdi
https://doi.org/10.1109/SP.2006.29
https://doi.org/10.1145/3144555.3144562
https://doi.org/10.1145/3144555.3144562
https://bit.ly/36CkBDI
https://bit.ly/36CkBDI
https://blog.npmjs.org/post/180565383195/details-about-the-event-stream-incident
https://blog.npmjs.org/post/180565383195/details-about-the-event-stream-incident
https://www.npmjs.com/advisories/774
https://www.npmjs.com/advisories/774
https://www.npmjs.com/advisories/765
https://www.npmjs.com/advisories/765
https://www.npmjs.com/search?q=string&ranking=popularity
https://www.npmjs.com/search?q=string&ranking=popularity
https://badjs.org/posts/event-stream/

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

Supply-Chain Vulnerability Elimination via Active Learning & Regeneration Anonymous submission #59 to ACM CCS 2021, Due Jan. 20, 2021, Seoul, TBD

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

In Proceedings of the 2018 ACM SIGPLAN International Symposium on New Ideas,

New Paradigms, and Reflections on Programming and Software (Onward! 2018).

ACM, New York, NY, USA, 12–28. https://doi.org/10.1145/3276954.3276959

[50] José Fragoso Santos and Tamara Rezk. 2014. An information flow monitor-

inlining compiler for securing a core of javascript. In IFIP International Information

Security Conference. Springer, 278–292.

[51] Thomas Hunter II (Intrinsic Security). 2018. Compromised npm Package: event-

stream. https://medium.com/intrinsic/compromised-npm-package-event-

stream-d47d08605502 Accessed: 2019-03-19.

[52] R. Sekar, V.N. Venkatakrishnan, Samik Basu, Sandeep Bhatkar, and Daniel C.

DuVarney. 2003. Model-Carrying Code: A Practical Approach for Safe Execution

of Untrusted Applications. In Proceedings of the Twenty-Fourth ACM Symposium

on Operating Systems Principles (SOSP ’03). Association for Computing Machinery,

New York, NY, USA, 15–28. https://doi.org/10.1145/945445.945448

[53] Burr Settles. 2009. Active Learning Literature Survey. Computer Sciences Technical

Report 1648. University of Wisconsin–Madison.

[54] Jiasi Shen andMartin C. Rinard. 2019. Using Active Learning to SynthesizeModels

of Applications That Access Databases. In Proceedings of the 40th ACM SIGPLAN

Conference on Programming Language Design and Implementation (PLDI 2019).

ACM, New York, NY, USA, 269–285. https://doi.org/10.1145/3314221.3314591

[55] Kensen Shi, Jacob Steinhardt, and Percy Liang. 2019. FrAngel: component-based

synthesis with control structures. Proceedings of the ACM on Programming

Languages 3, POPL (2019), 1–29.

[56] Xujie Si, Woosuk Lee, Richard Zhang, Aws Albarghouthi, Paraschos Koutris, and

Mayur Naik. 2018. Syntax-Guided Synthesis of Datalog Programs. In Proceedings

of the 2018 26th ACM Joint Meeting on European Software Engineering Conference

and Symposium on the Foundations of Software Engineering (ESEC/FSE 2018).

Association for Computing Machinery, New York, NY, USA, 515–527. https:

//doi.org/10.1145/3236024.3236034

[57] Rishabh Singh. 2016. Blinkfill: Semi-supervised programming by example for

syntactic string transformations. Proceedings of the VLDB Endowment 9, 10 (2016),

816–827.

[58] Snyk. 2016. Find, fix and monitor for known vulnerabilities in Node.js and Ruby

packages. https://snyk.io/

[59] Ayrton Sparling et al. 2018. Event-Stream, GitHub Issue 116: I don’t know what

to say. https://github.com/dominictarr/event-stream/issues/116 Accessed:

2018-12-18.

[60] Cristian-Alexandru Staicu, Michael Pradel, and Benjamin Livshits. 2018. Synode:

Understanding and Automatically Preventing Injection Attacks on Node.js. In

Networked and Distributed Systems Security (NDSS’18). https://doi.org/10.14722/

ndss.2018.23071

[61] Cristian-Alexandru Staicu, Daniel Schoepe, Musard Balliu, Michael Pradel, and

Andrei Sabelfeld. 2019. An empirical study of information flows in real-world

javascript. In Proceedings of the 14th ACM SIGSAC Workshop on Programming

Languages and Analysis for Security. 45–59.

[62] Trent Earl, JohnWilkinson, and the Verdaccio contributors. 2018. Verdaccio—npm

Proxy Private Registry. https://verdaccio.org/ Accessed: 2020-11-10.

[63] Neline van Ginkel, Willem De Groef, Fabio Massacci, and Frank Piessens. 2019. A

Server-Side JavaScript Security Architecture for Secure Integration of Third-Party

Libraries. Security and Communication Networks 2019 (2019).

[64] Nikos Vasilakis, Jiasi Shen, and Martin Rinard. 2020. Automatic Synthesis of

Parallel and Distributed Unix Commands with KumQuat. CoRR abs/2012.15443

(2020). arXiv:2012.15443 https://arxiv.org/abs/2012.15443

[65] Nikos Vasilakis, Cristian-Alexandru Staicu, Grigoris Ntousakis, Konstantinos

Kallas, Ben Karel, André DeHon, and Michael Pradel. 2020. Mir: Automated Quan-

tifiable Privilege Reduction Against Dynamic Library Compromise in JavaScript.

arXiv preprint arXiv:2011.00253 (2020).

[66] Navid Yaghmazadeh, Xinyu Wang, and Isil Dillig. 2018. Automated migration of

hierarchical data to relational tables using programming-by-example. Proceedings

of the VLDB Endowment 11, 5 (2018), 580–593.

[67] Serdar Yegulalp. 2016. How one yanked JavaScript package wreaked havoc.

https://bit.ly/3ofwkz2 Accessed: 2020-12-10.

[68] Heng Yin, Dawn Song, Manuel Egele, Christopher Kruegel, and Engin Kirda.

2007. Panorama: Capturing System-Wide Information Flow for Malware Detec-

tion and Analysis. In Proceedings of the 14th ACM Conference on Computer and

Communications Security (CCS ’07). Association for Computing Machinery, New

York, NY, USA, 116–127. https://doi.org/10.1145/1315245.1315261

[69] Nicholas C. Zakas and ESLint contributors. 2013. ESLint—Pluggable JavaScript

linter. https://eslint.org/ Accessed: 2018-07-12.

[70] Markus Zimmermann, Cristian-Alexandru Staicu, CamTenny, andMichael Pradel.

2019. Smallworld with High Risks: A Study of Security Threats in the Npm

Ecosystem. In Proceedings of the 28th USENIX Conference on Security Symposium

(SEC’19). USENIX Association, USA, 995–1010.

A SUMMARY OF SHEPHERDING CHANGES

We have addressed all four requirements in the revised version, and

marked the parts of the revised paper with a different color to aid

our shepherd in identifying these changes.

Sooel Son <son.sooel@gmail.com> July 25, 2021

(1) Soundness/Completeness issues: please include a separate

section that addresses the limitations of Harp in terms of its

soundness and completeness. Overall in the paper, the au-

thors promised to redefine the soundness and completeness

properties.

We have addressed this requirement by completely rewriting Sec. 5

to redefine and explain the guarantees offered by Harp. We have

also added a new Section on “Discussion & Limitations” (§9), which

starts with the limitations of the theoretical guarantees provided by

Harp’s synthesis algorithm. We have also changed the definitions

in Appendix B, and note that we plan on rewriting other parts of

the paper (e.g., the outline of Alg. 1) to make these properties easier

for the reader to extract and understand.

(2) Possible future work: We recommend discussing possible

future work in this direction of the work, such as identifying

productive classes of computation that a DSL can capture for

inference and regeneration. Also, the authors need to clarify

the scope and meaning of synthesizing string computations

in software supply chain vulnerabilities.

We have addressed this requirement in the new Sec. 9—closing with

a discussion concurrent and future work in this line of research.

The lifting of double-blind constraints has allowed us to expand

on and delineate promising prior and concurrent work. We outline

seven promising classes of computations, and provide pointers to

relevant concurrent developments in contexts outside that of the

security problems associated with software supply-chain attacks.

We note that we plan on rewriting other parts of the paper such as

Sec. 1 and 2 to clarify the scope and meaning of synthesizing string

computations in software supply chain vulnerabilities.

(3) Code coverage: Please add code coverage of the collected

input-output pairs, which indirectly represent how many

functionalities from the original library are covered.

We have addressed this requirement by adding (1) a new column

in Tab. 1 showing the code-coverage results of the collected input-

output pairs, and (2) a paragraph explaining these results and sum-

marizing functionality not exercised by Harp. Due to timing con-

straints, this version of the paper reports only on code coverage

results on functionality exercised only within a 10-minute timeout

per library function; in the final version of the paper we will include

numbers for the full synthesis runs (i.e., for the full time reported

in column t2(s)).

(4) Algorithm 1: Expand and explain all subprocedures in

Algorithm 1.

We have addressed this requirement by expanding Sec. 4.2 to in-

clude, explain, and exemplify all five sub-procedures mentioned in

Algorithm 1.15

https://doi.org/10.1145/3276954.3276959
https://medium.com/intrinsic/compromised-npm-package-event-stream-d47d08605502
https://medium.com/intrinsic/compromised-npm-package-event-stream-d47d08605502
https://doi.org/10.1145/945445.945448
https://doi.org/10.1145/3314221.3314591
https://doi.org/10.1145/3236024.3236034
https://doi.org/10.1145/3236024.3236034
https://snyk.io/
https://github.com/dominictarr/event-stream/issues/116
https://doi.org/10.14722/ndss.2018.23071
https://doi.org/10.14722/ndss.2018.23071
https://verdaccio.org/
https://arxiv.org/abs/2012.15443
https://arxiv.org/abs/2012.15443
https://bit.ly/3ofwkz2
https://doi.org/10.1145/1315245.1315261
https://eslint.org/

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

Anonymous submission #59 to ACM CCS 2021, Due Jan. 20, 2021, Seoul, TBD Anon.

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

Other changes: We have also added information about the popu-

larity of libraries in Tab. 1. Due to tight timing constraints, we have

not yet addressed other reviewer suggestions, but plan on doing so

as promised in the rebuttal. Thank you!

B PROOF SKETCHES

Definition B.1. (IO-Correctness) Given a function f , the syn-
thesized function f ′ is said to be IO-correct, if and only if, f ′ is
expressible in the Harp DSL (with constants extracted from f) and
for all input i consistent with the input type of f , f (i) = f ′(i).

Definition B.2. (Consistentency w.r.t. function f , input set I ,
andmaximumprogram size n)A synthesized function f ′ is said
to be consistent w.r.t. a function f , input set I of sizem containing

inputs consistent with the input type of f , and a maximum program

size n, if f ′ is expressible in the Harp DSL (with constants extracted

from f) and is of size less than equal to n, and for all inputs i ∈ I :

f (i) = f ′(i)

Note that, given a function f , the IO-correct function f ′ is con-
sistent w.r.t. function f , for any input set I (consistent with the

input type of f), and any maximum program size n greater than

the size of f ′.

Theorem B.3. (Initial State) For any function f , all functions f ′

in Pn are consistent w.r.t function f , input set I = ∅, and maximum

program size size n. Also, if there exists a function f ′ of size less than
equal to n, which is IO-correct with respect to f , then f ′ ∈ Pn .

Proof. The Harp algorithm extracts all constants from function

f and instantiates all sketches is the Harp DSL of size n. The TypeT
(extracted using soundTypeConstraints) is a sound approximation

of the actual output type of f . A function f ′ ∈ Pn if and only if f ′

of size less than equal to n, is expressible in the Harp DSL (with

constants extracted from f), and T is a sound approximation of

f ′’s output type. Therefore, given I = ∅, all functions in f ′ ∈ Pn
are consistent with f (input set I = ∅ and max size n).

Also, if there exists a IO-correct function f ′ of size less than

equal to n, then f ′ is consistent with respect to f (I = ∅ and max

size n) and T is a sound approximation of the output type of f ′.
Therefore, if there exists a IO-correct function f ′ of size less than
equal to n, then f ′ ∈ Pn . □

Theorem B.4. (Consistency) Given a function f ∈ L, let I be
the set of inputs returned by the function generateInputs, Pn be the

set of programs returned by allPrograms, and P be the set of pruned

program pruneSpace. If P , ∅ and f ′ is equal to getOpt(P),then f ′

is consistent w.r.t. function f , input set I , and maximum program size

n. Also, if the IO-correct function f ′ ∈ Pn , then f ′ ∈ P .

Proof. pruneSpace only prunes a function f ′ ∈ Pn if and only

if ∃i ∈ I , such that f ′(i) , f (i). Therefore, all f ′ ∈ P are consistent

with respect to f (input set I and max size n). The getOpt returns
a function f ′ ∈ P , therefore if the algorithm synthesis a function

f ′ for function f , then f ′ is consistent with respect to f (input set

I and max size n).
pruneSpace will never prune out the IO-correct function f ′ as

for all inputs f (i) = f ′(i). Therefore, if f ′ ∈ Pn , then f ′ ∈ P . □

Theorem B.5. (Convergence) Given a function f and a maxi-

mum function size n, let Fn be the set of functions in the Harp DSL

of size less than equal to n, such that, a IO-correct function f ′ ∈ Pn .
As we add more inputs to the set of inputs generated by function

generateInputs, Harp will synthesize a function f ′′, such that, f ′′

and f have the same output on an increasing set of inputs.

Proof. Pn is equal to the set returned by allPrograms(n,T).
From Theorem B.3, f ′ ∈ Pn . Let I be the set of input set constructed
by generateInputs. Let PI be the set of programs returned by the

function pruneSpace. Note that if f ′ ∈ P , then for all I , f ′ ∈ PI
(Theorem B.4).

Note that, if I0 ⊆ I1, then PI1 ⊆ PI0 (as for any function f ′′ ∈ PI1 ,
then f ′′ has the same output as f on inputs in I0).

A larger set of inputs allows Harp to prune out functions which

do not have the same output as f on this larger set of inputs. There-

fore, by adding more inputs, Harp will synthesize a function f ′′,
such that, f ′′ and f have the same output on an increasing set of

inputs. □

C ADDITIONAL EVALUATION RESULTS

Non-string-processing Libraries: We also apply Harp on 11

libraries that were misclassified as processing strings, to evalu-

ate Harp’s --quick-abort mechanism. On these libraries, Harp

aborts ALR within 5 seconds with a warning that they contain

side-effectful computations that cannot be learned. Eight of these

libraries import built-in modules that are not supported by Harp

such as debug, http, or fs—for example, minimatch depends on

fs and is thus not inferable. One of these libraries, chalk, depends
indirectly on os and tty for checking the environment for color

support and thus it not inferable. Finally, ignore and attn pro-

vide their functionality by extending the runtime context with an

auxiliary value.

L ALR P(L′) C(L′)

string-upper 2.9s 1.3% 66.7%

right-trim 2.7s 1.8% 100%

left-trim 2.6s 0.7% 100%

lr-trim 46.7s 0.4% 100%

repeat-text 17.1s 0.7% 100%

Fig. 7: C/C++ ALR. Harp applied

to C/C++ libraries.

C/C++ Libraries: Fig. 7 sum-

marizes results of applyingHarp

to 5 C/C++ libraries, including

the time to complete learning

(column ALR), the regenerated-

library performance (column P(L′)
with positive values for slowdown

and negative for speedup), and

its correctness with respect to

the original one (column C(L′), counting percentages of test cases).

These libraries export a single function and are wrapped with

Node’s NAN module [6].
1

Harp’s ALR ranges between 2.6–17.1s (avg.: 14.4s), driven by the

size of the regenerated library. Naturally, the performance of the

regenerated JavaScript libraries is lower that that of the original

compiled libraries, and ranges between 0.4–1.8% (avg.: 1.0%) of the

original library’s runtime performance (Col. P(L′)). Harp regener-
ated full library behavior, except string-upper’s locale-dependent
functionality.

1
NAN is an abstraction layer meant to simplify the development and maintenance of

native add-ons over a constantly changing V8 API.

16

	Abstract
	1 Introduction
	2 Background & Example
	3 Threat Model
	4 Active Learning & Regeneration
	4.1 Domain-specific Language
	4.2 Synthesis Algorithm
	4.3 Input Generation
	4.4 Mapping Library Structure

	5 Guarantees
	6 Refinements
	6.1 Isolated Learning
	6.2 Synthesis Acceleration
	6.3 Multi- & Part-Library Regeneration
	6.4 Quick Aborts

	7 Implementation & Evaluation
	7.1 Methodology
	7.2 Use Case: Event-Stream
	7.3 Use Case: Left-Pad
	7.4 Use Case: String-Compare
	7.5 Applying Harp to More Libraries

	8 Related Work
	9 Discussion & Limitations
	10 Conclusion
	References
	A Summary of Shepherding Changes
	B Proof Sketches
	C Additional Evaluation Results

