
Towards Hybrid Cooperative-Preemptive Scheduling
Yizheng Xie

yizheng_xie@brown.edu
Brown University
Providence, USA

Di Jin
di_jin@brown.edu
Brown University
Providence, USA

Nikos Vasilakis
nikos@vasilak.is
Brown University
Providence, USA

Abstract
Cooperative scheduling avoids the many shared-state pitfalls
of preemption, but risks fairness—in the limit resulting in
denial of service and resource exhaustion. This paper argues
that a careful hybrid between cooperation and preemption is
both feasible and advantageous: by allowing only carefully
controlled and developer-configurable preemption in an oth-
erwise cooperative environment, the scheduler can maintain
key invariants while restoring fairness. The paper presents a
series of case-study workloads that motivate the need for pre-
emption in real-world cooperative environments, sketches a
hybrid design that introduces controlled preemption while
maintaining cooperation benefits, and discusses the benefits
by applying this hybrid design on the case-study workloads.
A hybrid scheduling implementation, 𝐶𝑥 , is in progress.

CCS Concepts: • Software and its engineering→ Sched-
uling;Coroutines;Concurrent programming structures.

Keywords: Scheduling, Preemption, Cooperation, Event, OS
Thread, Language Runtime, Concurrency

1 Introduction
Cooperative, or non-preemptive, scheduling is a common
multitasking approach in which tasks yield voluntarily to
one another—without being forced to do so by an external
scheduler. Cooperation offers multiple benefits: it simplifies
the management of state shared among tasks, which yield
only after safely tidying up shared state, and improves perfor-
mance, as tasks yield to each other directly—without the in-
volvement of external scheduling, complex state save-restore,
and other overheads. As a result, cooperative scheduling is
used pervasively in numerous runtime environments—e.g.,
JavaScript’s async/await [45], Lua’s coroutines [5], Julia’s
Tasks [2], and Rust’s Tokio runtime [2, 5, 15].

Unfortunately, cooperative scheduling can allow a single
task to monopolize execution and resources, either acciden-
tally or intentionally. Since tasks yield control only voluntar-
ily, any single task may decide to never yield—thus leading to
delays in execution for the rest of the tasks, lack of fairness,

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.
PLOS ’25, Seoul, Republic of Korea
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-2225-7/25/10
https://doi.org/10.1145/3764860.3768329

accidental resource exhaustion, or even malicious attacks.
Examples of such adverse effects due to resource monop-
oly in real-world environments include head-of-line block-
ing [19, 32, 42], denial-of-service (DoS) attacks [22, 38, 49],
resource exhaustion [36], delayed garbage collection [18],
and instability in constrained operating system implementa-
tions [1, 60].

This antithesis between cooperative and preemptive sched-
uling underpins a classical debate in the literature, including
the controversy between (cooperatively scheduled) event-
based concurrency constructs versus (preemptively sched-
uled) thread-based concurrency [17, 26, 27, 39, 55]. This and
other heated debates in languages and systems [41, 48] are
more about antithetical scheduling approaches than contrast-
ing concurrency abstractions (§2).
The key thesis underlying this paper is that a carefully

hybridized approach between cooperation and preemption
is both feasible and advantageous. Feasibility stems from
introducing carefully controlled, coarse-grained preemption
into an otherwise cooperatively scheduled environment; and
advantages stem from sane(r) management of shared state
without the risk of execution monopoly.

The proposed hybrid approach, termed cooperative-with-
controlled-preemption scheduling or cocoon scheduling, lever-
ages the abstractions naturally found in cooperative envi-
ronments. Introducing cocoon scheduling to applications
requires importing a native library that introduces a set of
abstractions and runtime support for careful preemption.
Cocoon runtime combines controllable language-level inter-
rupts with scheduling handlers invoked directly upon inter-
rupt. Scheduling handlers can preempt running tasks and
execute developer-defined preemption tasks that are care-
fully constrained to maintain key invariants. Preemption
tasks are written in a subset of the source language designed
to limit effects to shared state—ensuring safe and re-entrant
execution. Developer-provided tasks written in this subset
are checkable via ahead-of-time static program analysis that
confirms the safety of these fragments before development,
informing developers of any potential violations—e.g., acci-
dentally modifying shared state.
Apart from addressing inherent limitations in coopera-

tive scheduling, cocoon additionally allows developers to
interpose upon, control, and manipulate the task queues
and related data structures of a cooperative scheduling envi-
ronment. While this manipulation is constrained to ensure

1

https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3764860.3768329

PLOS ’25, October 13–16, 2025, Seoul, Republic of Korea Yizheng Xie, Di Jin, and Nikos Vasilakis

Cooperative

Preemptive

Hybrid
Time

 Task A: read(x); update(x,x+1) Task B: read(x); update(x,x+1)

 Task A: read(x); update(x,x+1)

 Task A: read(x); update(x,x+1) Task B: read(x); update(x,x+1)

 Task B: read(x); update(x,x+1)S SS

Preemption

Figure 1. Different scheduling approaches. Two tasks A (blue) and B (orange) execute concurrently. Cooperative environments (top) run
tasks to completion unless they explicitly yield. Preemptive environments (mid) invoke an external scheduler (gray), which switches tasks at
predefined and, from the task perspective arbitrary, intervals—thus requiring synchronization. Cocoon scheduling allows for controlled,
lightweight preemption of tasks (green) while preserving the semantics of the original program.

cocoon maintains safety, it is still powerful enough to satisfy
the unmet needs of several practical scenarios (§3).
Starting with a discussion of prior scheduling work (§2),

this paper introduces a series of scenarios that highlight
fundamental scheduling limitations (§3), then introduces (§4)
and applies (§5) cocoon scheduling to these scenarios, before
concluding with broader possibilities (§6).

2 Background & Prior Hybrid Approaches
This section dives deeper into the various scheduling ap-
proaches, with key trade-offs summarized in Tab. 1, ending
with relevant work in other hybrid approaches.

2.1 Cooperative scheduling
Historically, cooperative scheduling has been the first ap-
proach taken by the implementors of a multitasking envi-
ronment as it is significantly easier to implement and reason
about [29]: tasks are scheduled to run until they complete,
unless they themselves voluntarily yield control. Consider
the two tasks A and B at the top of Fig. 1, which read and
update a global variable x shared between the two. Unless
task A explicitly yields control by e.g., invoking an yield or
calling asynchronous operations (which it does not), task B
will run only after A completes, i.e., there is no way for B to
observe inconsistent state. Even if another task—intended
to preempt other tasks—arrives, it must wait until task A
finishes.
Strengths. Cooperative multitasking reduces the risk of
concurrency bugs caused by race conditions and misused
synchronization primitives such as locks, as tasks yield only
at explicitly defined points, allowing developers to tidy up
shared state. Aside from its implementation simplicity, task
switches are typically lightweight because they occur en-
tirely in user space via explicit calls, without kernel involve-
ment; the runtime saves minimal continuation state and
resumes the task when it is runnable.
Due to its correctness, attractive simplicity, and perfor-

mance characteristics, cooperative scheduling is common
since the early days of operating systems, e.g., the classic Ma-
cOS and Windows 1.x-3.11 in the nineties. It is widely used
in modern programming languages runtimes and real-time

Table 1. Comparison of cooperative and preemptive scheduling.

Cooperative Preemptive

Synchronization Simple (yield) Complex (many)
Fairness guarantee Limited Strong
Liveness guarantee Limited Strong
Scheduling granularity Coarse Fine
Context switch overhead Low High
Customizability High Low

operating systems. Programming abstractions such as fu-
tures and promises allow developers to express concurrency
explicitly by awaiting results [7, 11, 14], while asynchro-
nous callbacks allow registering handlers to be invoked as
responses to events such as incoming request or completion
of disk I/O. Cooperative user-level threads are also prevalent
in a wide range of runtime environments such as coroutines
in Lua and C++, green threads in Julia, and fibers in Ruby
and the Win32 API. Embedded and real-time systems such
as Free RTOS [31] and RISC OS [1] leverage cooperative
scheduling for efficiency.
Challenges. Unfortunately, as tasks themselves decidewhen
to yield, they risk consuming unbounded execution resources,
resulting in accidental or voluntary starvation. These risks
are acutely exacerbated by modern trends: (1) the prevalence
of complex software dependencies, including hundreds of
transitive third-party libraries in modern applications [54],
which might contain bugs or vulnerabilities monopolizing
resources; (2) the use of large-language models for code gen-
eration by developers of varying skill and care [35]. Real
cases of cooperative tasks monopolizing resources (§3) have
rendered entire systems unusable [36, 49, 50].

2.2 Preemptive Scheduling
Preemptive scheduling typically leverages some form of ex-
ternal stimulus such as an interrupt or an OS signal to invoke
a scheduler; In turn, the scheduler decides which task to run
next according to some criteria, e.g., fair sharing or priorities.
Fig. 1 (middle) shows the scheduler (gray box) preempting
Task A before its completion and scheduling Task B.
Strengths. Periodic and frequent such preemptions have
multiple benefits. They ensure fair resource sharing by mul-
tiplexing tasks of various lengths and priorities, and improve

2

Towards Hybrid Cooperative-Preemptive Scheduling PLOS ’25, October 13–16, 2025, Seoul, Republic of Korea

reliability by preventing excessive resource consumption—
by suspending or terminating misbehaving tasks without
disrupting others.
Unix and Unix-based operating systems (but not classic

MacOS in the nineties) provided process-level preemptive
multitasking out of the box—part of Unix’s broader approach
to user multiplexing. Modern systems such as Linux, the
entire Windows NT family (including Windows 2000 and
later), and mobile platforms like Android and iOS, also rely
on kernel-level preemptive multitasking. Finer-grained ab-
stractions such as POSIX and NPTL threads support kernel-
level preemptive multitasking by allowing the kernel sched-
uler to make context-switching decisions independently of
task cooperation. Beyond OS-level threads commonly ex-
posed across programming languages, other preemptive ab-
stractions are prevalent at the language level by user-level
schedulers preempting and scheduling tasks. Examples in-
clude processes in Erlang [51], thread pools in C#, the Ex-
ecutorService in Java [6], and the Rayon parallelism library
in Rust [12].
Challenges. But such preemption, as Dijkstra put it, “opens
up the box of Pandora” [30]. As Fig. 1’s task A is preempted
before completion, task B updates a shared variable x with
a stale value—which is preventable with mutex locks and
other synchronization primitives, which in turn give rise to
deadlocks, livelocks, and other pathologies that haunt devel-
opers. Entire generation of techniques has been developed
to deal with these pathologies.

2.3 Hybrid scheduling

Prior work. The conflicting strengths of these two sched-
uling approaches have given rise to significant discussion in
several communities. This includes classic debates such as
threads vs. events [39], efforts introducing automatic stack
management—i.e., avoiding the need for callbacks—into co-
operative task environments [17], decoupling thread rep-
resentation from scheduler implementation [41]. These ap-
proaches mitigate the drawbacks of choosing either extreme,
yet they do not integrate their complementary strengths.

Other hybrid scheduling approaches aim to combine spe-
cific benefits—e.g., improving concurrency programming [24,
44, 58], ensuring fairness [33], or unifying abstractions [20,
23]. However, their approach and philosophy is different
from cocoon scheduling, as they do not seek to strike a gen-
eral and configurable sweet spot between preemptive and
cooperative approaches.
A new approach. Cocoon scheduling prioritizes the key ad-
vantages of cooperative scheduling—such as the fully cooper-
ative Node.js or Lua runtime—while incorporating a limited,
customizable form of preemption. It is agnostic to the inter-
rupt mechanism, a choice that plays a significant role in the
resulting performance under certain workloads—multiple,

possibly combined, choices would be possible. For exam-
ple, recent user-level preemptive scheduling solutions rely
on compiler instrumentation [34] or hardware-supported
features such as posted interrupts [37] and user-level in-
terrupts [32, 42]. Timeout-based preemption such as timed
functions [22] and execution budgets [4] yield control to
the scheduler at predefined timeouts, allowing the system to
preempt tasks when they exceed their time budget.

3 Real-World Examples
This section presents three real-world scenarios that would
benefit from cocoon scheduling (§4): mitigating DoS attacks,
avoiding head-of-line blocking, and enabling timely overload
control.

3.1 Regular Expression Denial-of-Service
Regular-Expression Denial of Service (ReDoS) is a class of
denial-of-service attacks that exploit the exponential-time
worst-case behavior of certain regular expression patterns,
often rendering popular web servers unresponsive [36, 49,
50]. Such attacks induce excessive CPU usage by triggering
catastrophic backtracking in regular expression engines. For
example, poorly constructed pattern (a+)+b with nested
quantifiers causes an exponential time complexity on input
with repeated “a”, e.g., aaaaaaac. As shown in the codes
below, an evil input can make the server consume excessive
CPU resources for infinite time in ln.3.
1 const server = http.createServer((req, res) => {
2 const regex = /(a+)+b/;
3 const match = regex.match(req.body);
4 res.send(match); });

This vulnerability can prevent other tasks from executing
and monopolize resources, thus render applications unre-
sponsive in cooperative environments [22, 38, 53].

3.2 Head-of-line Blocking
Head-of-line blocking, where a long-running task delays the
execution of subsequent tasks, leads to high tail latency in
server applications that handle heterogeneous workloads
with dispersed request times—a common pattern in data-
center environments such as database systems and search
engines [13, 21, 47]. For example, short-running GET re-
quests (ln.1 below) to a database service may suffer elevated
tail latency and reduced throughput when a long-running
SCAN request (ln.5) blocks the queue.
1 dbserver.get('/get', (req, res) => {
2 const parsedUrl = url.parse(req.url, true);
3 const result = db.getById(parsedUrl.query.id);
4 res.send(result); });
5 dbserver.post('/scan', (req, res) => {
6 const query = url.parse(req.url, true).query;
7 // long-running scan operation
8 const result = db.scan(query.start, query.end);
9 res.send(result); });

3

PLOS ’25, October 13–16, 2025, Seoul, Republic of Korea Yizheng Xie, Di Jin, and Nikos Vasilakis

Different request types (e.g., latency-critical vs. best-effort) or
workload characteristics (e.g., traffic distributions) may also
require customized scheduling priorities or granularities, in-
formed by dynamic application needs or runtimemetrics. For
instance, heavy-tailed distributions such as bimodal work-
loads can benefit from shorter preemption quanta, reducing
blocking in a timely manner [42].

3.3 Delayed Overload Control
Service overload, where traffic surges exceed service capac-
ity, can severely degrade performance and responsiveness.
For example, complex microservice architectures, widely
adopted across various enterprises [52, 57], are particularly
vulnerable to overload, such as demand spikes during ma-
jor sales events. Effective overload control leverages diverse
runtime metrics for early overload detection, and reacts to
overload conditions, including distributed rate limiting [56,
59], granting credits to clients [25], and selective API throt-
tling [46]. For example, the following overload control mech-
anism tracks request-queuing time—i.e., the time between ar-
rival and processing start (ln.2 below)—and propagates over-
load signals (ln.4) to coordinate adaptive rate limiting [59].
1 function handler(req, res) {
2 const queuingTime = Date.now() - req.arrivalTime;
3 if (queuingTime > THRESHOLD) {
4 propagateOverloadSignal(); }
5 processRequest(req, res); }

Such overload control—similar to other high-priority tasks,
e.g., garbage collection or health checks [18]—requires timely
execution to rapidly adapt to fluctuating workloads; how-
ever, in fully cooperative environments, a long-running task
can delay overload detection and mitigation, exacerbating
performance degradation.

4 Cocoon Scheduling
This section sketches the key elements of cocoon scheduling
(Fig. 2), at times using examples from the Node.js internals, to
enable safe and low-overhead user-level preemption without
compromising the simplicity and efficiency of cooperative
scheduling approaches.

4.1 Abstraction
Cocoon starts from a cooperative programming abstraction
and introduces controlled, safe, and developer-configurable
preemption at different levels of granularity, such as time-
based or event-driven preemption. As illustrated in Fig. 1,
cocoon scheduling preserves the task abstraction in coop-
erative scheduling, where a preemption task (green box)—a
developer-defined specialized task—can preempt currently
running tasks. It allows developers to define a scheduling
policy that determines when the preemption happens and
what the preemption task does.
Generalization and invariants. The cocoon abstraction
is generalizable to different cooperative environments, but

Interrupt Handler
(Orchestration)

NotificationTimer/
Event

State/Control Stub

Preemption Task
Execution

Main Task
Execution

Safe
Policies

Static Checker
(Specifications)

Runtime

Figure 2. The design of a cocoon scheduler. Developer-provided
scheduling policies, checked for their safety (left), are introduced
to the runtime as handlers that run as a response to interrupts—e.g.,
user interrupt from a dedicated timer core. Handlers cut into the
execution of a cooperative task, switching to an isolated context to
safely preempt without affecting the state of the original task.

must preserve several key invariants of state management
to ensure the safety of the preemption. For example, the
preemption tasks can read the states of other tasks—to take
them into account during scheduling decisions—but can-
not modify them directly. Moreover, they can execute only
at well-defined safe points—where program invariants are
preserved—rather than at arbitrary points during execution.
And the preempted tasks cannot access the preemption task’s
internal states—they remain preemption unaware.

4.2 Scheduling Policy

Policy registration. An example API snippet written in
JavaScript illustrates how developers can define a policy
to prevent infinite execution. The type (ln.2) of the policy
indicates the preemption granularity, either time-based or
event-driven preemption, e.g., invoking the preemption task
every 100 microseconds. The preemption task (ln.5) is ex-
pressed as a normal function using a constrained subset of
the original language to perform controlled operations,e.g.,
throw an exception to the preempted task or continue its
execution.
1 const cocoon = require('cocoon-scheduler');
2 cocoon.registerCustomPolicy({
3 type: 'time', // time-based preemption
4 interval: 100, // us
5 task: (ctx) => {
6 if (cocoon.getCurrentTaskExecutionTime() > 1000) {
7 // if the current task exceeds 1s, throw an exception
8 cocoon.throw(new Error('Execution time exceeded'));
9 }
10 cocoon.continue(); // continue execution
11 }
12 })

To simplify policy registration, the scheduler can provide
predefined policies to address common use cases. For ex-
ample, a policy that preempts regular expression matches
exceeding a specified time limit can be registered as follows:
1 // register a pre-defined policy
2 cocoon.registerTimeEnforcementPolicy({
3 func: 'regex.match', // function to check
4 timeLimit: 1000, // ms
5 task: (ctx) => cocoon.throw(
6 new Error('Execution time exceeded')

4

Towards Hybrid Cooperative-Preemptive Scheduling PLOS ’25, October 13–16, 2025, Seoul, Republic of Korea

7),
8 })

Policies often prioritize certain tasks over others, e.g., priori-
tizing latency-critical tasks over best-effort ones. Given the
aforementioned invariants and the potential risks illustrated
in Fig. 1, the developer should explicitly register preemptible
tasks and safe tasks to allow the scheduler to safely preempt
them, e.g., preempting the SCAN handler (as preemptible tasks
in ln.3) when the GET handler (as safe tasks in ln.4) is ready.
1 function ScanHandler(req, res) { ... }
2 function GetHandler(req, res) { ... }
3 cocoon.registerPreemptibleFunc(ScanHandler);
4 cocoon.registerSafeFunc(GetHandler);

Expressiveness. Preemption tasks can define custom states
that are accessible exclusively to preemption tasks, e.g., a
global map tracking request distribution. To allow commu-
nication between preemption tasks and the main task, the
policy allows registering shared states that are writable by
preemption tasks and only readable by the main task.
1 cocoon.registerState({ overloaded: false, })

Depending on the language runtimes, the preemption tasks
can access main task’s internal states and various runtime
states related to its execution context, e.g., the call stack,
resource usage, and event queue length.
Policy update and cancellation. The scheduler can pro-
vide a set of control APIs that allow dynamically changing
scheduling behavior at runtime, including updating and can-
celing registered policies. For example, a policy designed
to mitigate head-of-line blocking may reduce the schedul-
ing time quantum for aggressive preemption upon observ-
ing heavy-tailed workload distribution, or cancel the policy
when preemption is no longer needed.
Ensuring safety. There are several constraints that poli-
cies must satisfy. First, policies must not import third-party
libraries, as these may introduce side effects, external depen-
dencies, or malicious codes that interfere with application
execution. Second, policies must be deterministic and guaran-
teed to terminate, avoiding unbounded execution that could
stall progress. Third, policies must not perform non-blocking
operations (e.g., I/O or network calls) that complete asyn-
chronously after the handler completes execution. Finally,
policies cannot modify the application’s internal state unless
explicitly registered as shared states, preventing breaking
language-level semantics and ensuring atomicity guarantees.
Developer efforts and trust. As with other cooperative
scheduling systems, Cocoon offloads the responsibility of
defining scheduling policies to developers. Unlike manual ap-
proaches that require inserting yield points at the statement
level, however, Cocoon supports true preemption while mini-
mizing developer burden: it provides lightweight preemptive
capabilities that can be selectively and easily integrated into
existing applications through provided APIs, as showcased
in Section 5. While static analysis ensures aforementioned

safety guarantees even when developers inadvertently in-
troduce unsafe code changes, cocoon ultimately relies on
developers to define and enforce benign application behav-
iors.

4.3 Mechanism
Fig. 2 illustrates the runtime architecture of a cocoon sched-
uler, which consists of three main components: policy regis-
tration, notification, and preemption execution. Language
runtimes can selectively implement these mechanisms based
on internal capabilities, minimizing preemption overhead
while ensuring safety and efficiency.
Registration. Developers register preemptive policies us-
ing the registration API (solid arrows in Fig. 2). Upon reg-
istration, the runtime performs static analysis to verify the
safety of the policy, ensuring that it adheres to aforemen-
tioned invariants and constraints. If verification succeeds, the
scheduler initializes a sandbox or an isolated context (e.g., a
separate v8::Isolate in the Node.js runtime) to safely eval-
uate the policy. This isolation preserves the semantics of the
underlying execution abstraction and prevents corruption
of currently running task’s runtime context.
Notification. The runtime supports multiple notification
mechanisms to trigger preemption, including timer-based
and event-driven notifications. For timer-based preemption,
the runtime sets up a dedicated timer process that notifies the
Node.js runtime at regular intervals via general-purpose OS
signals or low-overhead, hardware-supported interrupts. For
example, user-level interprocessor interrupts (UIPI) reduce
the preemption overhead from 2.4 µs (for signal handling) to
0.4 µs [32, 42]. To handle notifications, the runtime registers a
handler (e.g., signal handler) to trigger preemption. For event-
driven preemption, the runtime hooks into the underlying
asynchronous interface (e.g., the libuv event loop in Node.js)
to trigger preemption when new events are enqueued, such
as incoming requests or completed I/O operations.
Preemption. When a notification arrives, the runtime inter-
rupts the main execution at a safe point where program state
is well-defined and consistent, e.g., via V8’s RequestInterrupt
API in Node.js. The runtime then switches to the isolated
execution context to execute the registered preemption task
(dashed arrows in Fig. 2). This isolated context maintains
its own execution state and operates on preemption-specific
states, separate from the main task’s execution context. Upon
completion of the preemption task, the runtime determines
switching back to the main task’s execution context. The
runtime applies the selected action before switching back to
the main task’s execution context.
Stubs. The runtime implements state and control stubs
that bridge the isolated preemption execution context with
the main task’s execution context. State stubs allow preemp-
tion tasks to inspect main task’s internal states and execu-
tion context without directly corrupting its memory. These

5

PLOS ’25, October 13–16, 2025, Seoul, Republic of Korea Yizheng Xie, Di Jin, and Nikos Vasilakis

stubs can also update global variables explicitly registered
as shared state. Control stubs perform operations that affect
main task’s behavior according to execution of preemption
tasks, such as scheduling an exception to the main task’s
context using V8’s RequestInterrupt API. They also sup-
port dynamic modifications to registered policies, including
adjusting the preemption quantum or canceling a policy.

5 Applying Cocoon Scheduling
This section revisits aforementioned examples (§3) and illus-
trates how developers can leverage cocoon scheduling (§4)
to address their problems.

5.1 ReDoS Prevention
Cocoon scheduling enables developers to enforce fine-grained
preemption policies on regular expression operations and
other long-running tasks by registering a default policy that
preempts regex matches exceeding a specified time limit (e.g.,
100 ms), as illustrated in §4. To support this, the scheduler
spawns a dedicated timer process that periodically notifies
the Node.js runtime—e.g., via low-level user interrupts—to
inspect the call stack and track cumulative execution time
in target functions such as regex.match. If a regex exceeds
its assigned time budget, the scheduler safely interrupts the
task and throws an exception into the corresponding V8
isolate. This exception can then be caught and handled by
the application using the following code snippet, preventing
ReDoS attacks and preserving responsiveness:
1 // create preemptive regex server
2 const server = http.createServer((req, res) => {
3 const regex = /^([a-zA-Z]+)+$/;
4 try {
5 const match = regex.match(req.body);
6 res.send(match);
7 } catch (err) {
8 if (err instanceof cocoon.PreemptedError) {
9 res.status(500).send('Interrupted');
10 }
11 }
12 });

5.2 Head-of-line Blocking Mitigation
As illustrated in the code snippet below, cocoon scheduling
allows developers to register a long-running server.scan
function as preemptible, a short-running server.get func-
tion as safe, and a policy at event-based granularity (or a
specific time quanta such as 5µs) that preempts server.scan
when a new request arrives.
1 cocoon.registerPreemptibleFunc(server.scan);
2 cocoon.registerSafeFunc(server.get);
3 cocoon.registerDefaultPreemptionPolicy({
4 type: 'event', // event-based preemption
5 })

By explicitly registering preemptible and safe functions, the
scheduler preserves the atomicity guarantees of coopera-
tive scheduling while enabling selective preemption. The

scheduler supports preemption at event granularity—e.g.,
extending the Node.js runtime—to avoid the overhead of
coarse-grained time-based preemption when no events are
pending. When a new get request arrives, the scheduler
interrupts the main application isolate if the currently exe-
cuting task is server.scan. It switches to a dedicated V8 iso-
late to handle the get request without corrupting application
state. After the handler completes, the scheduler resumes
execution of the previously preempted task.

5.3 Overload Control
Cocoon scheduling enables developers to inspect various
runtime states at arbitrary points in time, including call
stacks, resource usage, and event queues. It also supports
programmable and timely reactions to profiling events. As
shown in the code snippet below, developers can register
a safe handler that executes specific actions upon overload.
They can then define a scheduling policy that periodically
monitors the incoming request queue and invokes the han-
dler whenever the queue length exceeds a predefined thresh-
old. In this way, cocoon scheduling enables overload control
mechanisms that are both informed and timely—by exposing
runtime states and allowing preemption.

1 cocoon.registerState({ overloaded: false, })
2 cocoon.registerSafeFunc(OverloadAction);
3 cocoon.registerCustomPolicy({
4 type: "time",
5 interval: 100, // microseconds
6 task: (ctx) => {
7 if (cocoon.getQueueLength() > threshold) {
8 OverloadAction();
9 }
10 cocoon.continue(); // continue execution
11 }
12 })

6 Broader Horizons
As shown earlier, with careful design cocoon scheduling
is feasible (§4) and has the potential to aleviate key limi-
tations of cooperative scheduling (§5) without opening up
Pandora’s Box [30]. Once available, it would also enable fur-
ther opportunities across several other areas that go beyond
direct scheduling concerns.
Observability and profiling. Profiling tools like distributed
tracing [9, 10] and observability frameworks such as ser-
vice meshes [3, 8] typically rely on coarse-grained, external
metrics such as service dependencies and resource usage.
Without further instrumentation, these tools often cannot
distinguish whether high latency is caused by resource con-
tention between tasks or by a single task monopolizing the
CPU. Cocoon scheduling might enable more accurate di-
agnosis of performance issues by introducing lightweight,
low-overhead, and reactive profiling policies that monitor
transient states and resource usage at a finer granularity, e.g.,

6

Towards Hybrid Cooperative-Preemptive Scheduling PLOS ’25, October 13–16, 2025, Seoul, Republic of Korea

per-handler CPU time, memory footprint, or request queue
length.
Timing-related security. Systems often require both strong
timing guarantees and isolation to prevent interference be-
tween components when enforcing timing constraints [43].
Other environments, such as serverless platformss often rely
on lightweight isolation that does not use stronger and pre-
emptive isolation such as containers or VMs [16]. Cocoon
scheduling can enhance the security of these environments
by allowing such security policies—e.g., timing, resources,
and access control—to execute in isolated contexts.
MemoryManagement. Memorymanagement significantly
impacts data locality, memory access efficiency, and garbage
collection performance. For example, cocoon scheduling can
mitigate inter-task cache interference caused by arbitrary
preemptions [40], thereby improving memory efficiency
while still preserving preemption capabilities. Also, cocoon
scheduling can potentially enable efficient garbage collec-
tion by proactively monitoring memory pressure and CPU
idle time, enabling timely and minimally disruptive garbage
collection cycles [18, 28].

Acknowledgments
We are thankful to anonymous PLOS reviewers. This mate-
rial is based upon research supported by NSF awards CNS-
2247687 andCNS-2312346, DARPA contract no. HR001124C0486,
an Amazon Research Award (Fall 2024), a seed grant from
Brown University’s Data Science Institute, and a BrownCS
Faculty Innovation Award.

References
[1] 2024. RISC OS. https://www.riscos.info/index.php/RISC_OS. Accessed:

June 2025.
[2] 2025. Asynchronous Programming. https://docs.julialang.org/en/v1/

manual/asynchronous-programming/#man-asynchronous. Accessed:
June 2025.

[3] 2025. Cilium. https://cilium.io/. Accessed: June 2025.
[4] 2025. Consume Budget. https://docs.rs/tokio/latest/tokio/task/coop/

fn.consume_budget.html. Accessed: June 2025.
[5] 2025. Coroutines. https://www.lua.org/pil/9.1.html. Accessed: June

2025.
[6] 2025. ExecutorService. https://docs.oracle.com/javase/8/docs/api/java/

util/concurrent/ExecutorService.html. Accessed: June 2025.
[7] 2025. Futures and async syntax. https://doc.rust-lang.org/book/ch17-

01-futures-and-syntax.html. Accessed: June 2025.
[8] 2025. Istio. https://istio.io/. Accessed: June 2025.
[9] 2025. Jaeger. https://www.jaegertracing.io/. Accessed: June 2025.
[10] 2025. OpenTelemetry. https://opentelemetry.io/. Accessed: June 2025.
[11] 2025. Promise. https://developer.mozilla.org/en-US/docs/Web/

JavaScript/Reference/Global_Objects/Promise. Accessed: June 2025.
[12] 2025. Rayon. https://docs.rs/rayon/latest/rayon/. Accessed: June 2025.
[13] 2025. RocksDB. https://rocksdb.org/. Accessed: June 2025.
[14] 2025. std::promise. https://cplusplus.com/reference/future/promise/.

Accessed: June 2025.
[15] 2025. tokio. https://tokio.rs. Accessed: June 2025.
[16] Zack Bloom. 2018. Cloud Computing without Containers. https://

blog.cloudflare.com/cloud-computing-without-containers/. Accessed:

June 2025.
[17] Atul Adya, Jon Howell, Marvin Theimer, Bill Bolosky, and John

Douceur. 2002. Cooperative task management without manual stack
management. In 2002 USENIX Annual Technical Conference (USENIX
ATC 02).

[18] Austin Clements. 2019. Non-Cooperative Preemption.
https://go.googlesource.com/proposal/+/master/design/24543-
non-cooperative-preemption.md. Accessed: June 2025.

[19] Berk Aydogmus, Linsong Guo, Danial Zuberi, Tal Garfinkel, Dean
Tullsen, Amy Ousterhout, and Kazem Taram. 2025. Extended User
Interrupts (xUI): Fast and Flexible Notification without Polling. In
Proceedings of the 30th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Volume 2.
373–389.

[20] Guy E Blelloch, Lenore Blum, Mor Harchol-Balter, and Robert Harper.
2020. Multiscale Scheduling: Integrating Competitive and Cooperative
Scheduling in Theory and in Practice. (2020).

[21] Sol Boucher, Anuj Kalia, David G Andersen, and Michael Kaminsky.
2018. Putting the" micro" back in microservice. In 2018 USENIX Annual
Technical Conference (USENIX ATC 18). 645–650.

[22] Sol Boucher, Anuj Kalia, David G Andersen, and Michael Kaminsky.
2020. Lightweight preemptible functions. In 2020 USENIX Annual
Technical Conference (USENIX ATC 20). 465–477.

[23] Frédéric Boussinot. 2006. FairThreads: mixing cooperative and pre-
emptive threads in C. Concurrency and Computation: Practice and
Experience 18, 5 (2006), 445–469.

[24] Pavol Černỳ, Edmund M Clarke, Thomas A Henzinger, Arjun Radhakr-
ishna, Leonid Ryzhyk, Roopsha Samanta, and Thorsten Tarrach. 2017.
From non-preemptive to preemptive scheduling using synchronization
synthesis. Formal methods in system design 50, 2 (2017), 97–139.

[25] Inho Cho, Ahmed Saeed, Joshua Fried, Seo Jin Park, Mohammad Al-
izadeh, and Adam Belay. 2020. Overload control for {𝜇s-scale}{RPCs}
with breakwater. In 14th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 20). 299–314.

[26] Ryan Cunningham and Eddie Kohler. 2005. Making Events Less Slip-
pery with eel.. In HotOS.

[27] Frank Dabek, Nickolai Zeldovich, Frans Kaashoek, DavidMazieres, and
Robert Morris. 2002. Event-driven programming for robust software.
In Proceedings of the 10th workshop on ACM SIGOPS European workshop.
186–189.

[28] Ulan Degenbaev, Jochen Eisinger, Manfred Ernst, Ross McIlroy, and
Hannes Payer. 2016. Idle time garbage collection scheduling. ACM
SIGPLAN Notices 51, 6 (2016), 570–583.

[29] Edsger W. Dijkstra. 1967. The structure of the “THE”-
multiprogramming system. In Proceedings of the First ACM
Symposium on Operating System Principles (SOSP ’67). Associa-
tion for Computing Machinery, New York, NY, USA, 10.1–10.6.
https://doi.org/10.1145/800001.811672

[30] Edsger W. Dijkstra. 2000. EWD1303: My recollections of operat-
ing system design. https://www.cs.utexas.edu/~EWD/transcriptions/
EWD13xx/EWD1303.html. Accessed: June 2025.

[31] FreeRTOS. 2025. Tasks and Co-routines. https://www.freertos.org/
Documentation/02-Kernel/02-Kernel-features/01-Tasks-and-co-
routines/00-Tasks-and-co-routines.

[32] Linsong Guo, Danial Zuberi, Tal Garfinkel, and Amy Ousterhout.
2025. The Benefits and Limitations of User Interrupts for Preemp-
tive Userspace Scheduling. In 22nd USENIX Symposium on Networked
Systems Design and Implementation (NSDI 25). 1015–1032.

[33] Reiner Hähnle and Ludovic Henrio. 2023. Provably fair cooperative
scheduling. arXiv preprint arXiv:2312.16977 (2023).

[34] Rishabh Iyer, Musa Unal, Marios Kogias, and George Candea. 2023.
Achieving microsecond-scale tail latency efficiently with approximate
optimal scheduling. In Proceedings of the 29th Symposium on Operating
Systems Principles. 466–481.

7

https://www.riscos.info/index.php/RISC_OS
https://docs.julialang.org/en/v1/manual/asynchronous-programming/#man-asynchronous
https://docs.julialang.org/en/v1/manual/asynchronous-programming/#man-asynchronous
https://cilium.io/
https://docs.rs/tokio/latest/tokio/task/coop/fn.consume_budget.html
https://docs.rs/tokio/latest/tokio/task/coop/fn.consume_budget.html
https://www.lua.org/pil/9.1.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ExecutorService.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ExecutorService.html
https://doc.rust-lang.org/book/ch17-01-futures-and-syntax.html
https://doc.rust-lang.org/book/ch17-01-futures-and-syntax.html
https://istio.io/
https://www.jaegertracing.io/
https://opentelemetry.io/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://docs.rs/rayon/latest/rayon/
https://rocksdb.org/
https://cplusplus.com/reference/future/promise/
https://tokio.rs
https://blog.cloudflare.com/cloud-computing-without-containers/
https://blog.cloudflare.com/cloud-computing-without-containers/
https://go.googlesource.com/proposal/+/master/design/24543-non-cooperative-preemption.md
https://go.googlesource.com/proposal/+/master/design/24543-non-cooperative-preemption.md
https://doi.org/10.1145/800001.811672
https://www.cs.utexas.edu/~EWD/transcriptions/EWD13xx/EWD1303.html
https://www.cs.utexas.edu/~EWD/transcriptions/EWD13xx/EWD1303.html
https://www.freertos.org/Documentation/02-Kernel/02-Kernel-features/01-Tasks-and-co-routines/00-Tasks-and-co-routines
https://www.freertos.org/Documentation/02-Kernel/02-Kernel-features/01-Tasks-and-co-routines/00-Tasks-and-co-routines
https://www.freertos.org/Documentation/02-Kernel/02-Kernel-features/01-Tasks-and-co-routines/00-Tasks-and-co-routines

PLOS ’25, October 13–16, 2025, Seoul, Republic of Korea Yizheng Xie, Di Jin, and Nikos Vasilakis

[35] Juyong Jiang, Fan Wang, Jiasi Shen, Sungju Kim, and Sunghun Kim.
2024. A survey on large language models for code generation. arXiv
preprint arXiv:2406.00515 (2024).

[36] John Graham-Cumming. 2019. Details of the Cloudflare Outage on
July 2, 2019. https://blog.cloudflare.com/details-of-the-cloudflare-
outage-on-july-2-2019/. Accessed: June 2025.

[37] Kostis Kaffes, Timothy Chong, Jack Tigar Humphries, Adam Belay,
David Mazières, and Christos Kozyrakis. 2019. Shinjuku: Preemptive
Scheduling for {𝜇second-scale} Tail Latency. In 16th USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI 19).
345–360.

[38] Kenton Varda. 2018. Webassembly on Cloudflare Workers. https://
blog.cloudflare.com/webassembly-on-cloudflare-workers/. Accessed:
June 2025.

[39] HughC Lauer and RogerMNeedham. 1979. On the duality of operating
system structures. ACM SIGOPS Operating Systems Review 13, 2 (1979),
3–19.

[40] Sheayun Lee, Sang Lyul Min, Chong Sang Kim, Chang-Gun Lee, and
Minsuk Lee. 1999. Cache-conscious limited preemptive scheduling.
Real-Time Systems 17, 2 (1999), 257–282.

[41] Peng Li and S Zdancewic. 2006. A language-based approach to unifying
events and threads (2006).

[42] Yueying Li, Nikita Lazarev, David Koufaty, Tenny Yin, Andy Anderson,
Zhiru Zhang, G Edward Suh, Kostis Kaffes, and Christina Delimitrou.
2024. Libpreemptible: Enabling fast, adaptive, and hardware-assisted
user-space scheduling. In 2024 IEEE International Symposium on High-
Performance Computer Architecture (HPCA). IEEE, 922–936.

[43] Mengqi Liu, Lionel Rieg, Zhong Shao, Ronghui Gu, David Costanzo,
Jung-Eun Kim, and Man-Ki Yoon. 2019. Virtual timeline: a formal ab-
straction for verifying preemptive schedulers with temporal isolation.
Proceedings of the ACM on Programming Languages 4, POPL (2019),
1–31.

[44] Jeremy Manson, Jason Baker, Antonio Cunei, Suresh Jagannathan,
Marek Prochazka, Bin Xin, and Jan Vitek. 2005. Preemptible atomic
regions for real-time Java. In 26th IEEE International Real-Time Systems
Symposium (RTSS’05). IEEE, 10–pp.

[45] OpenJS Foundation. 2025. Node.js. https://nodejs.org/en. Accessed:
June 2025.

[46] Jinwoo Park, Jaehyeong Park, Youngmok Jung, Hwijoon Lim, Hyunho
Yeo, and Dongsu Han. 2024. TopFull: An Adaptive Top-Down Overload
Control for SLO-Oriented Microservices. In Proceedings of the ACM
SIGCOMM 2024 Conference. 876–890.

[47] Korakit Seemakhupt, Brent E Stephens, Samira Khan, Sihang Liu,
Hassan Wassel, Soheil Hassas Yeganeh, Alex C Snoeren, Arvind Kr-
ishnamurthy, David E Culler, and Henry M Levy. 2023. A cloud-scale
characterization of remote procedure calls. In Proceedings of the 29th
Symposium on Operating Systems Principles. 498–514.

[48] KC Sivaramakrishnan, Tim Harris, Simon Marlow, and Simon Peyton
Jones. 2016. Composable scheduler activations for Haskell. Journal of
Functional Programming 26 (2016), e9.

[49] Stack Overflow. 2016. Outage Postmortem - July 20, 2016.
http://web.archive.org/web/20180801005940/http://stackstatus.net/
post/147710624694/outage-postmortem-july-20-2016. Accessed: June
2025.

[50] Cristian-Alexandru Staicu and Michael Pradel. 2018. Freezing the Web:
a study of {ReDoS} vulnerabilities in {JavaScript-based} web servers.
In 27th USENIX security symposium (USENIX Security 18). 361–376.

[51] Fredrik Stenmans. 2025. The Beam Book. https://blog.stenmans.org/
theBeamBook/. Accessed: June 2025.

[52] Sudhir Tonse. 2015. Scalable Microservices at Netflix. Challenges and
Tools of the Trade. https://www.infoq.com/presentations/netflix-ipc/

[53] C Joseph Vanderwaart. 2006. Static enforcement of timing policies using
code certification. Technical Report.

[54] Nikos Vasilakis, Ben Karel, Nick Roessler, Nathan Dautenhahn, André
DeHon, and Jonathan M. Smith. 2017. Towards Fine-grained, Auto-
mated Application Compartmentalization. In Proceedings of the 9th
Workshop on Programming Languages and Operating Systems (Shang-
hai, China) (PLOS ’17). Association for Computing Machinery, New
York, NY, USA, 43–50. https://doi.org/10.1145/3144555.3144563

[55] Rob Von Behren, Jeremy Condit, and Eric Brewer. 2003. Why events
are a bad idea (for {High-Concurrency} servers). In 9th Workshop on
Hot Topics in Operating Systems (HotOS IX).

[56] Jiali Xing, Akis Giannoukos, Paul Loh, Shuyue Wang, Justin Qiu,
Henri Maxime Demoulin, Konstantinos Kallas, and Benjamin C Lee.
2025. Rajomon: Decentralized and Coordinated Overload Control for
{Latency-Sensitive} Microservices. In 22nd USENIX Symposium on
Networked Systems Design and Implementation (NSDI 25). 21–36.

[57] Alex Xu. 2022. Twitter architecture 2022 vs. 2012. what’s changed over
the past 10 years? https://blog.bytebytego.com/p/twitter-architecture-
2022-vs-2012

[58] Jaeheon Yi, Caitlin Sadowski, and Cormac Flanagan. 2011. Cooperative
reasoning for preemptive execution. In Proceedings of the 16th ACM
symposium on Principles and practice of parallel programming. 147–156.

[59] Hao Zhou, Ming Chen, Qian Lin, Yong Wang, Xiaobin She, Sifan Liu,
Rui Gu, Beng Chin Ooi, and Junfeng Yang. 2018. Overload control for
scaling wechat microservices. In Proceedings of the ACM Symposium
on Cloud Computing. 149–161.

[60] Yousaf Bin Zikria, Sung Won Kim, Oliver Hahm, Muhammad Khalil
Afzal, and Mohammed Y Aalsalem. 2019. Internet of Things (IoT) op-
erating systems management: Opportunities, challenges, and solution.
Sensors 19, 8 (2019), 1793.

8

https://blog.cloudflare.com/details-of-the-cloudflare-outage-on-july-2-2019/
https://blog.cloudflare.com/details-of-the-cloudflare-outage-on-july-2-2019/
https://blog.cloudflare.com/webassembly-on-cloudflare-workers/
https://blog.cloudflare.com/webassembly-on-cloudflare-workers/
https://nodejs.org/en
http://web.archive.org/web/20180801005940/http://stackstatus.net/post/147710624694/outage-postmortem-july-20-2016
http://web.archive.org/web/20180801005940/http://stackstatus.net/post/147710624694/outage-postmortem-july-20-2016
https://blog.stenmans.org/theBeamBook/
https://blog.stenmans.org/theBeamBook/
https://www.infoq.com/presentations/netflix-ipc/
https://doi.org/10.1145/3144555.3144563
https://blog.bytebytego.com/p/twitter-architecture-2022-vs-2012
https://blog.bytebytego.com/p/twitter-architecture-2022-vs-2012

	Abstract
	1 Introduction
	2 Background & Prior Hybrid Approaches
	2.1 Cooperative scheduling
	2.2 Preemptive Scheduling
	2.3 Hybrid scheduling

	3 Real-World Examples
	3.1 Regular Expression Denial-of-Service
	3.2 Head-of-line Blocking
	3.3 Delayed Overload Control

	4 Cocoon Scheduling
	4.1 Abstraction
	4.2 Scheduling Policy
	4.3 Mechanism

	5 Applying Cocoon Scheduling
	5.1 ReDoS Prevention
	5.2 Head-of-line Blocking Mitigation
	5.3 Overload Control

	6 Broader Horizons
	References

