
Towards Fine-grained, Automated Application
Compartmentalization

Nikos Vasilakis
University of Pennsylvania

3330 Walnut Street
Philadelphia, PA 19104
nvas@seas.upenn.edu

Ben Karel
University of Pennsylvania

3330 Walnut Street
Philadelphia, PA 19104
karel@seas.upenn.edu

Nick Roessler
University of Pennsylvania

3330 Walnut Street
Philadelphia, PA 19104
nroess@seas.upenn.edu

Nathan Dautenhahn
University of Pennsylvania

3330 Walnut Street
Philadelphia, PA 19104
ndd@cis.upenn.edu

André DeHon
University of Pennsylvania

200 S. 33rd St.
Philadelphia, PA 19104

andre@acm.org

Jonathan M. Smith
University of Pennsylvania

3330 Walnut Street
Philadelphia, PA 19104
jms@cis.upenn.edu

Abstract
The rise of language-specific, third-party packages simplifies
application development. However, relying on untrusted
code poses a threat to security and reliability.

In this work, we propose exploiting module boundaries –
and the general trend towards more and smaller modules –
to achieve fine-grained compartmentalization. Automated
transformations can hide compartment boundaries and mini-
mize developer effort. Optional policy expressions can decou-
ple security assumptions at development time from require-
ments during composition and runtime. Using JavaScript’s
flourishing ecosystem, we discuss a wide range of risks and
sketch how the use of language-level solutions coupled sys-
temic mechanisms can protect against them.

CCS Concepts • Security and privacy → Software and
application security; Denial-of-service attacks; • Software
and its engineering→ Modules / packages;

Keywords Least-Privilege Separation, Compartmentaliza-
tion, Packages, Modules, Security
ACM Reference format:
Nikos Vasilakis, Ben Karel, Nick Roessler, Nathan Dautenhahn, An-
dré DeHon, and Jonathan M. Smith. 2017. Towards Fine-grained,
Automated Application Compartmentalization . In Proceedings of
PLOS’17, Shanghai, China, October 28, 2017, 8 pages.
https://doi.org/10.1145/3144555.3144563

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
PLOS’17, October 28, 2017, Shanghai, China
© 2017 Copyright held by the owner/author(s). Publication rights licensed
to Association for Computing Machinery.
ACM ISBN 978-1-4503-5153-9/17/10.
https://doi.org/10.1145/3144555.3144563

GH Repos Package Repo Size Growth
JavaScript 931,493 npm, ++ 530,050 507/day
Java 778,001 Maven Central 194,954 140/day
Ruby 569,180 RubyGems, ++ 134,764 33/day
Python 454,042 PyPi, + 113,602 72/day
PHP 408,210 Packagist, ++ 149,699 137/day

Table 1. Five popular programming languages and informa-
tion about the size and growth of their package repositories
(Snapshot: Aug. 1st 2017). “+” symbols indicate more package
repositories (not counted here).

1 Introduction
Composing software has changed significantly in scale, pro-
cess, and basis for trust. Software such as the Linux kernel
had many people focused on the quality and security of a
single, large codebase [35]; even such a cohesive effort failed
to prevent a slate of vulnerabilities [6, 8].
Today, however, programmers make increasing use of

third-partymodules from language-specific repositories. These
repositories contain tens of thousands of packages (Table 1)
from thousands of different authors. As a result, applica-
tions can have hundreds of third-party dependencies (Ta-
ble 4) that execute without meaningful privilege separation
or isolation beyond type safety guarantees. Although using
code from modules minimizes developer effort (e.g., reduced
development and maintenance costs), it exposes the system
to security risks (Table 2).
Further problems worsen these risks. Understanding the

internals of a complex package and verifying that it will not
behave in unintended ways [12, 29] are both difficult tasks.
The popularity of certain packages allows vulnerabilities
deep in the dependency graph to cause widespread difficul-
ties [2, 5, 20, 27, 46, 50]. Vulnerabilities are becoming hard
to eradicate, since (i) some updates are fetched automati-
cally [38], and (ii) module unpublishing has become difficult
in order to avoid breaking dependency chains [49]. In the

43

PLOS’17, October 28, 2017, Shanghai, China N. Vasilakis et al.

 var dbc = require("./dbc.json");

 var ejs = require("ejs");

 function (req, res) {

 var m = require("minimatch");

 var s = m.test(/d/, req.body);

 // do sth with result and db

 res.end()

 }

(a) simplified server-side code

(b) default

(c) w/ BREAKAPP

1

2

3

4

5

6

7

8

Figure 1.A simplified server application with multiple third-
party modules of varying trust.

face of such challenges, the emerging practice is to avoid
packages not endorsed by security advisories [7, 25, 43].

Instead of merely reacting to announced vulnerabilities or
avoiding composition altogether due to security concerns,
we propose leveraging the trend towards more and smaller
modules to enhance – or retrofit – application security. The
core idea is to exploit programming language properties (e.g.,
abstraction, encapsulation, trust boundaries) to automati-
cally transform a program at the module boundaries while
offloading enforcement to the operating system (e.g., address
space isolation, LXC/namespaces, scheduling). We propose a
drop-in replacement of a language runtime’s module system,
BreakApp, that uses module boundaries as guides to draw
the lines between compartments.

BreakApp is centered around a parametrizable transforma-
tion technique that spawns modules in their own dedicated
compartments during runtime. Automated transformations
hide compartment boundaries by converting function calls
to remote procedure invocations. Optional runtime policy ex-
pressions fix aforementioned parameters, effectively decou-
pling assumptions made during module development from
requirements present during module composition. Since a
single module can be used by several different types of appli-
cations, it is important to let the application developer choose
which module behaviors to disallow. Policies also improve
BreakApp’s performance, since they allow programmers to
customize the provided functionality on a per-import basis.

BreakApp does not require any annotations, does not re-
quire any trace (pre-)runs, and does not rewrite any source
code.Moreover, policy expressions are backwards-compatible
with existing codebases and forwards-compatiblewith vanilla
module systems. As a result, the system lowers potential bar-
riers to widespread adoption and makes incremental security
retrofit in existing systems possible.

2 Problems
Consider a widely deployed, open source publishing plat-
formwritten in JavaScript such as Ghost [14]. At its core, this
application is an HTTP server that serves HTML generated
from Markdown files, with the ability to edit and search doc-
uments, attach hypermedia, and include comments. Ghost

Problem Example Package
Directory Traversal hostr, bitty, restafary, ++
Denial of Service ejs, node-uuid, minimatch, ++
Remote Code Execution ejs, pouchdb, reduce-calc, ++
Timing Attack fernet, cookie-signature, ++
Uninitialized Mem. Exposure mongoose, bl, request, ws, ++
Command Injection git-ls-remote, shell-quote, ++
Native Code Vulnerabilities libxmljs, libyaml
Sensitive Info. Exposure airbrake
Env/Args Exfiltration crossenv, babelcli, ffmepg, ++

Table 2. Eight major vulnerability classes and specific in-
stances of packages available on npm [40], one of the main
JavaScript package repositories; “++” indicates that many
more packages with similar problems exist.

has 62 top-level dependencies; counting recursive imports,
the total jumps to 981 packages.

Fig. 1 – (a, b) presents a highly simplified version of Ghost
highlighting typical module usage in modern applications.
Different boxes correspond to the context of different mod-
ules, with the outer box corresponding to the top-level con-
text. All these logically unrelated packages execute within
the same address space; a problem in any one of the packages
exposes other packages too. But what can go wrong when
we are talking about a high level, memory safe, managed
programming language?

Example 1 As a simple example, suppose that Ghost uses
ejs for template generation (Fig. 1 (a), line 2). A malicious
version of this module could try to access the database cre-
dentials by any of the following ways: (i) attempt to read the
global, singleton dbc object, (ii) import itself the dbc.json

config file from the file system, or (iii) access the loaded
config module directly through the module cache. In a con-
ventional setup, all three are possible, mainly because it is
difficult to distinguish these illegitimate behaviors from le-
gitimate ones: any function can reach into global scope, any
module can import built-in modules to read the file system,
and any part of the program has direct access to cached
modules for performance reasons.

Example 2 As a more interesting case, suppose Ghost
provides search functionality (on line 5) using the minimatch
module, which will necessarily be supplied user-generated
strings. Even if minimatch itself is benign, a malicious user
can launch a RegEx DoS attack by sending pathological reg-
ular expressions [9]. Given that many high-performance
implementations follow an event-driven, cooperative con-
currency model, a problematic search query can cause the
application to stop accepting requests until the pathological
request completes.
These two examples scratch only the surface of what is

possible due to problematic modules. Table 2 summarizes
a few vulnerabilities discovered in widely-used JavaScript

44

Towards Fine-grained, Automated Application Compartmentalization PLOS’17, October 28, 2017, Shanghai, China

packages. Such flaws can be attributed to a number of fac-
tors: (i) common features of dynamic programming lan-
guages (e.g., call stack inspection, reflection capabilities, mon-
key patching), (ii) language deficiencies (e.g., in JavaScript:
default-is-global, prototype poisoning, mutability attacks),
(iii) implementation-specific choices (e.g., event-driven imple-
mentations, cooperative multitasking, module system cache),
(iv) authority considerations where any part of the applica-
tion can read or write like any other (e.g., read process.env

or process.args, write to the filesystem or network), and
finally (v) use of “native” modules1 that nullify the safety
guarantees provided by a high-level programming language.

3 System Overview
BreakApp is a backwards-compatible, drop-in replacement of
the language’s module system. It identifies when to spawn a
new compartment (e.g., for each module) and then lets the
operating system handle issues such as isolation, commu-
nication, and scheduling. It can either be imported as an
application-specific module (where it must be loaded before
any untrusted code) or replace the system-wide built-in mod-
ule system. It primarily consists of three interrelated tasks
(Fig. 1 – (c)): (i) upon import, setup a new compartment along
with a communication channel between the two; (ii) trans-
form subsequent function calls to remote procedure calls
(RPCs); (iii) periodically monitor compartments for health
and status updates. For now, we can think of compartments
as processes and communication channels as FIFO pipes
or Unix domain sockets, but we will soon discuss several
different types when talking about policies.

Compartment Setup BreakApp first dynamically replaces
(viz., “shadows”) functions responsible for importing mod-
ules (e.g., require("ejs")) with thin interposition wrappers:
whenever the program executes a function that imports a
new module, control jumps to BreakApp. If a module with
this name is not already loaded in its own compartment,
BreakApp (i) creates a new child compartment that imports
only this module, and (ii) sets up a new communication
channel between the two. The module system on the child’s
side inspects the direct acyclic graph (DAG) object returned
by the import, and recursively replaces each node with a
wrapper:
primitive values are copied unmodified and wrapped with

an interposition mechanism that records changes.
function values become RPC stubs, which serialize argu-

ments, send them through the channel, and wait for
the results.

mutable values have their getter and setter functions re-
placed with RPC stubs.

1 Other examples of unsafe modules in safe languages include
unsafePerformIO in Haskell, unsafe blocks in Rust, C/C++ modules in
Ruby and Python, and foreign function interfaces (FFI) in Lua and Racket.

Policy Explanation
Type Compartment type (e.g., context, process)
IPC Communication type (e.g., FIFO, UDS, TCP)
Context Whitelist pointers to parent context
Instantiate Fresh compartment for each import
Replicate Multiple replicas; schedule round-robin
OnFail Action upon failure (function)
MinTime RPC results available only after min time
Group Group modules in a single compartment
Preload Create proactively instead of lazily
Trust Whitelist allowed modules
Doubt Blacklist disallowed modules
Composition How to combine policies in conflict

Table 3. Examples of interesting policies.

exceptions are re-thrown in the parent context after inspec-
tion from BreakApp running on the parent module.

If the specifiedmodule is already loaded, BreakApp simply
retrieves the channel pointer and returns the previously-
wrapped DAG.

The module systemmediates between the parent and child
compartments. Synchronous calls yield to the module sched-
uler, which serializes arguments, sends them through the
channel to the child, and waits for a response. The child-
side wrapper deserializes arguments and calls the required
method, sending results back through the channel. For asyn-
chronous function calls, the parent module wrapper regis-
ters an event listener that invokes the provided continuation
when results become available on the channel. In cases when
something does not go as expected in the child’s execution,
its code will throw an exception. BreakApp code running
on the child compartment will catch, serialize, and return it
to the caller compartment, where the parent-side BreakApp
code will deserialize and re-throw it.
Parent compartments naturally monitor the health (i.e.,

crashed, not responding) of child compartments upon re-
mote invocations, and take curative actions based on the
exact status (e.g., restart, kill, or spawn more compartments).
This is helpful both in cases where the module within the
compartment is launching a DoS attack as well as in cases
where asynchronous execution has lead to exceptions (e.g.,
access global variable etc.). Child compartments can use OS
primitives (e.g., SIGHUP on Linux) to be notified upon parent
exit.

4 Overview of policies
Policies allow users to parametrize several aspects of the
system’s behavior (Table 3). The goal is to give them the
flexibility to selectively disable capabilities the programming
language gives modules. For example, if a module is not
explicitly allowed to introspect or monkey-patch on core
application structures or access global state, these capabilities
can be disabled. Since policies express user insight, they can

45

PLOS’17, October 28, 2017, Shanghai, China N. Vasilakis et al.

also be used to fine-tune performance characteristics (e.g.,
number of compartments and their types).
Policies can be set at the application-wide level or at the

level of individual modules. Below is an example of how
users express policies upon import:

1 var regex = require("minimatch",

2 { type: require.types.PROCESS });

This specifies that the minimatchmodule should be loaded
in its own, fresh process. OS-enforced isolation via processes
provides better and potentially more costly isolation guar-
antees compared to a V8 runtime context.2 However, these
guarantees are probably worse (and certainly less expensive)
than the ones provided by a virtual machine running on a
different physical host.
Other examples of policies include context, a mapping

object from bound variables to their values. Variables can
point to values in different runtime contexts as a way to share
state. Policies such as instantiate and replicate affect how
many compartments to create per module. onFail is used
to express possible actions when unexpected behavior is
detected (e.g., kill and restart compartment). We will see
examples of uses in the next section.

Policy expressions are dynamic objects that can be gener-
ated during runtime. They can potentially change for each
import — even between imports of the same module. This
is a powerful feature, as different branches of a control flow
statement might load the samemodule with a different policy.
Composition options allow policies to freeze at the top level,
trumping any other policy expression found in third-party
modules.
Per module policy expressions are fully compatible with

existing codebases. They are backwards-compatible with
systems that do not provide a BreakApp-enabled module
system: due to variadic arguments, the policy argument is
ignored by the built-in require function. Not specifying
policies (i.e., all of the code out there today) is forwards-
compatiblewith systems that do provide aBreakApp-enabled
module system: as alluded to earlier, BreakApp will use the
application-wide default configuration.

5 Discussion
We want to get a sense of the decomposition potential out
in the wild, the space of possible security benefits, and the
worst-case performance costs associated with applications.

5.1 Decomposition Potential
What are the modularity characteristics of JavaScript ap-
plications? In particular, is there a potential for compart-
mentalization? Table 4 describes some of the most popular

2 Google’s V8 is a fast JIT compiler and runtime system for JavaScript. In V8
terms, a context is an execution environment that allows separate, unrelated
executions in a single instance of V8. Similar mechanisms exist in other
language runtimes [16, 48] or have been proposed at the OS level [24].

Application Direct Total App Module
Imports Imports Code Code

cash 15 84 15936 142098
command eslint 34 135 231907 171209

yo 30 301 2005 27081
popcorn 46 765 103602 192082

desktop twitter 10 120 2951 419151
atom 57 358 19879 223147
hackernews 5 871 2603 333975

mobile mattermost 17 521 11383 305664
stockmarket 14 44 4473 406650
express 26 42 16906 10369

server ghost 62 981 96979 342676
strider 64 659 32115 99051
chalk 3 4 297 172

utility natural 3 3 19741 5863
winston 6 6 6229 2989
averages 26 326 37800 178811

Table 4. Module usage in five categories of applications.

JavaScript applications by four metrics: (i) only top-level
modules, (ii) all modules within the dependency tree, (iii)
lines of application code not part of a third-party module,
and (iv) total lines of code in all of its third-party imports.
Third-party code is a non-trivial portion of today’s ap-

plications. In our sample set, imported code is on average
4 times larger than homegrown; the ratio is much worse
for large applications (1:120 for hackernews vs. 2:1 chalk).
Different applications spread third-party code differently.
For example, in mobile applications, more than 99% of their
third-party code comes from a single package – the mobile
framework in use (e.g., Ionic, ReactNative).
Direct module counts – the boundaries of trust between

the code that a developer writes and its third-party dependen-
cies – are somewhere between 2 and 65. These numbers high-
light the minimum number of compartments (average: 26).
More fine-grained compartmentalization at the level of indi-
vidual packages requires an order of magnitude more com-
partments (average: 326). Since there is a 1-1 correspondence
between files and modules, file-level compartmentalization
is possible but would require 1-2 orders of magnitude more
compartments (e.g., popcorn has more than 10K JavaScript
files). Interestingly, analyzing more than 1K imports (trans-
lating to more than 100K file-level modules) reveals a 43.09
average ratio of lines of code per file – much smaller than
what we expected to see.3

All of the above show that there is a potential for com-
partmentalization, but also that the flexible granularity that
policies offer is crucial.

3 As a point of comparison, Minix 3 [18], a modern microkernel that champi-
oned least-privilege separation, comes with userspace servers on the order
of thousands of lines of code.

46

Towards Fine-grained, Automated Application Compartmentalization PLOS’17, October 28, 2017, Shanghai, China

Compartments InProc FileSys V8sbx Proc Function Pipe UDS TCP
5 0.4ms 4.3ms 12.9ms 342.5ms 192.3GB/s 18.3GB/s 149.5MB/s 158.1MB/s

2.5µs 1.3–1.4ms 17.8 – 73.8ms 17.7 – 36.6ms
50 0.4ms 30.2ms 76.6ms 3.2s 157.1GB/s 17.5GB/s 127.0MB/s 134MB/s

3.18µs 11.6–13.2ms 244.5 – 536.6ms 210.3 – 566.8ms
500 0.5ms 136.4ms 524.7ms 35.2s 46.5GB/s 3.6GB/s 16.4MB/s 20.9MB/s

10.74µs 154.3–160.3ms 3.71 – 11.95s 6.5 – 15.6s
5K 1.0ms 1.7s 7.8s 362.4s — — — —

Table 5. Compartmentalization costs. Left: module startup times. Right: throughput (and latency ranges) of boundary crossing.

5.2 Mitigation and Policies
Are there any third-party vulnerabilities out in the wild, and
if yes, would BreakApp mitigate them? Table 2 contains a
small set of distinct vulnerability classes along with several
known instances found in the npm registry [40], caused by
only a subset of the possible factors outlined at the end of
Section 2. Revisiting the two example cases from Section 2
shows how a BreakApp-enhanced version of the blogging
application would mitigate these attacks.

Example 1 Under BreakApp, the ejs module is placed
into its own compartment: it does not have access to the
application’s global scope, it does not have access to the
module cache, and — given a policy of restricting access
within a new directory — it does not have access to the
rest of the filesystem. If ejs attempts to access something
it should not (e.g., a global variable), an exception will be
thrown and get caught by BreakApp.

Other configurations are also interesting: by spawning the
database config module in its own compartment, we make
sure no other module gets access to it beyond the parent
module. The startup cost is negligible since there is only
one extra compartment started. IPC costs are also amortized
over long periods of time in which the database credentials
are not needed (i.e., the database config module is in the
application’s “control plane”, not its “data plane”).

Example 2 With BreakApp, there are at least two con-
current processes executing – one handling the matching
of regular expressions (and communicating only with the
main application) and the main application itself receiving
requests. This is already a big win: search requests that do
not contain regular expressions can still get served; it is
only a subset of only the search functionality that remains
paralyzed by the DoS attack.
But what happens when a second malicious regular ex-

pression arrives? Due to monitoring, BreakApp is at least
aware that the previous request is taking more time than
expected. By examining the input to the most recent RPC, it
concludes that the new one is also problematic. Policies give
users several options at this point: (i) shut the child com-
partment down and report; (ii) restart the compartment; (iii)
spawn a new replica and use a scheduling policy (e.g., round
robin) to schedule RPC calls to these replicas; (iv) discard

or pushback based on history; or (v) by passing a function,
implement their own action. From the examples above, as
well as our own preliminary experiences, it seems that much
will depend on identifying a set of "good-enough" defaults
balancing performance and security. These default policies
are a primary goal of our future evaluation.

5.3 Performance
What is the performance cost expected fromusingBreakApp?
Table 5 highlights compartment startup costs (left) and the
costs of boundary crossing (right) under various configu-
rations. Large compartment counts were evaluated to an-
ticipate the trend towards small modules (e.g., maximum
crossings of 500 when we did not witness more than 50). Ex-
periments were executed on Andromeda [47] bundled with
V8 v6.0 and LibUV v1.13 running on a Linux server with
512GB of memory and 160 cores at 2.27 GHz.

For the first experiment, weminimize the effects of module
sizes by making modules return a single integer. Modules
are loaded sequentially, since modules later in the program
might be parametrized by values in earlier modules. FileSys is
how the vanilla module system works: it looks up a module
on the filesystem using a resolution algorithm, wraps it so
that its global variables do not leak to the outer context (and
to provide some global-looking variables, e.g., filename), and
evaluates the code in the current context. V8sbx creates a new
V8 context for each module and selectively whitelists shared
variables from the parent context. Proc uses OS processes to
isolate compartments between each other, resulting in higher
costs, illustrating one instance of the security-performance
trade-off policies attempt to address.

InProc keeps all modules in memory and avoids all source
code lookups but one (the first). It shows that the vanilla sys-
tem already requires significantly more startup time (average
for 5Kmodules: 0.3ms per module) compared to an optimized
version (average for 5K modules: 0.2µs per module), without
adding any meaningful security benefits.
For the second experiment, we process an in-memory

stream of 0.5GB (/dev/shm/) using a linear pipeline of mostly-
empty stages (they flush some timing metadata when they
detect the end of a stream). Streaming starts only after all con-
nections have been established. Loopback TCP streaming has

47

PLOS’17, October 28, 2017, Shanghai, China N. Vasilakis et al.

a higher throughput than domain socket streaming, but la-
tencies are mixed. Experiments with fast userpace packet I/O
libraries such as netmap [36] (not included here) and shared-
memory pipes (included here) show much better latencies.
This illustrates another reason why policies are important.
Policies related to (i) the choice of compartment type and IPC
primitive, or (ii) identification and expression of the critical
path are both vital for high-performance applications.

5.4 Can we get good defaults?
There is indication that BreakApp can work in practice with
better performance than our conservative worst-case esti-
mates might suggest:
Shallow dependency trees Although the number of mod-

ules (hence, default compartments) is large due to
fanout, the maximum number of boundary crossings
is only related to the average depth of a tree – which
seems much smaller (Applications in Table 4 have an
average depth of only 6 levels).

Package deduplication Some of the logical dependencies
are identical between different modules (e.g., lodash,
underscore). Although they show as distinct packages
in the logical dependency tree, package managers usu-
ally deduplicate dependencies effectively flattening
parts of the tree. For instance, popcorn went from 765
to 656 modules, resulting in 15% smaller tree.

Small working sets Not all package subtrees are in the crit-
ical path. In our example application, both the database
configuration and the regex module have different us-
age patterns than the bulk of the application. They
can still be protected by this technique, without being
responsible for any hot-path overheads.

Parallel and lazy loading Dependency subtrees can take
advantage of different loading strategies. Parallel startup
is an obvious candidate: spawning 5K process compart-
ments in parallel took 24s. Applications are naturally
lazy in the way they load modules: we experimented
with saturating disk bandwidth to the point where
the 500 modules of the vanilla configuration took 3
seconds to load (instead of 136.4ms shown in Table 5
FileSys). Under such conditions, starting Ghost with
981 modules took under 0.4ms.

Other heuristics BreakApp can take advantage of interpo-
sition (by design) on boundary crossings and identify
“hot boundaries” as candidates for merge – which can
be done automatically after a prompt for security audit.

These insights, combined with performance-oriented poli-
cies (e.g., group subtrees together in order reduce the costs,
pick isolation guarantees etc.), suggest that a concrete instan-
tiation of BreakApp could be made practical in existing sys-
tems. However, to take full advantage of the increasing trend
towards small modules (by, say, isolating even the tiniest
modules, re-instantiating on every load, and running mul-
tiple replicas), all while maintaining negligible throughput

and latency degradation (Table 5) might require new insights
in low-overhead OS compartmentalization mechanisms.

6 Related Work
Our concerns about large-scale reliance on loose supply
chains are echoed by both academia [21, 27] and indus-
try [7, 25, 43]. Several recent companies [33, 41, 43] provide
third-party module assurances by having more people audit
and recommend packages in the wild, or crawl public repos-
itories for open vulnerabilities. In practice, they do not offer
any guarantees similar to compartmentalization, but can be
used complementary to our work: users (or libraries that are
built on top of BreakApp) can use these recommendations
to choose which modules to quarantine.
Package managers have recently added support for lock-

ing dependencies between deployments [32]. However, this
does not necessarily rule out extant problems; on the con-
trary, users forego valuable bug and vulnerability fixes, while
experiencing a more convoluted dependency management.
There is a long history of alternative system structures

with a focus on least privilege decomposition [39] and, more
generally, separation of concerns [10] (e.g., microkernels [18,
19, 23], capability systems [22, 42], and separation kernels [37]).
Increasing security requirements brought decomposition
to the foreground [34], culminating with systems such as
Crowbar [4] and SOAAP [15] that assist programmers into
decomposing applications into multiple compartments with
reduced privileges. However, its wide adoption is still being
impeded by lack of automation [27], the primary focus of
this work. Many concrete sandboxing primitives can be used
(e.g., SELinux [26], AppArmor [3], Docker [28]) and we plan
to experiment with some of them.

In the case of JavaScript specifically, much effort has gone
into client-side compartmentalization (e.g., execution isola-
tion [29], object capabilities [30], sandboxing [1, 45] infor-
mation flow control [44]). Our environment is very different
from theirs — isolation primitives (iframes), origin (explicit
sources), threat model (i.e., no C/C++ modules; no valid ac-
cess to “/etc/passwd”), compartments (few), and developer
effort (manual annotations or rewrite).
More recently, microservice architectures – a style for

building server applications as sets of loosely-coupled com-
ponents [13, 31] – are often touted as enabling fine-grained,
least-privilege decomposition inspired by the Unix philoso-
phy. Even more so, lambda architectures [11, 17] are emerg-
ing as a lighter-weight, evolutionary step beyond microser-
vices that use runtime contexts to offer improved elasticity.
In practice, however, both are vastly more coarse-grained
than the applications shown here, with each microservice
usually built on top of hundreds of packages similar to the
server-side applications outlined in Table 4. Moreover, (i)
communication between services is request-response style
and usually explicitly exposed to the application, (ii) decom-
position is a manual process that requires a careful design

48

Towards Fine-grained, Automated Application Compartmentalization PLOS’17, October 28, 2017, Shanghai, China

process (including agreeing on the interfaces) prior to devel-
opment. These are antithetical to our technique that hides
the underlying compartment boundaries, and our philosophy
of enhancing security with minimal development effort.

7 Conclusion
This paper identifies and calls the community to harness a
surprising potential in the way applications are built today:
the use of many third-party modules, although risky, of-
fers clear boundaries of trust. These boundaries can be used
to automate parametrizable, compartmentalization-oriented
transformations. Without any developer effort, a system can
spawn modules into their own compartments and hide their
boundaries from developers and users. Optional, flexible
runtime policies let composers fine-tune security and perfor-
mance trade-offs, essentially decoupling assumptions made
during module development from requirements during the
application runtime. Our vision is that, with the synergy be-
tween linguistic and systemic levels, we can have applications
with many, possibly dangerous, third-party packages be safer
than their monolithic counterparts.
The techniques presented integrate most naturally with

interpreted languages such as JavaScript or Python. Their
runtime environments expose a single function or function-
like operator that takes care of locating a module, inter-
preting it, and exposing its interface in the caller context.
Because all of this happens during runtime, the boundary
detection that occurs at the import statement is conveniently
unified with runtime compartment construction and code
transformations. In compiled languages, these actions would
be split between a compiler and a linker-loader. The com-
piler would be responsible for detecting compartment bound-
aries at import statements, marking object files as belonging
to separate compartments, encoding policies for the linker-
loader, and applying source transformations that will hide
the boundaries. The runtime linker-loader would construct
the compartments and channels during runtime. Since com-
munication depends on policies, the linker would also load
policy-specific shared libraries for handling compartment
communication.

Acknowledgements We would like to thank Athur Azevedo de
Amorim, Cătălin Hriţcu, Björn Knutsson, Yash Palkhiwala, Ben-
jamin C. Pierce, and John Sonchack for their helpful feedback. We
would also like to thank the anonymous reviewers for their com-
ments and suggestions, and Maria G. Plani for coming up with the
name BreakApp. This research was funded in part by National
Science Foundation grant CNS-1513687. Any opinions, findings,
conclusions, or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of the
National Science Foundation.

References
[1] Pieter Agten, Steven Van Acker, Yoran Brondsema, Phu H. Phung,

Lieven Desmet, and Frank Piessens. 2012. JSand: Complete Client-
side Sandboxing of Third-party JavaScript Without Browser Mod-
ifications. In Proceedings of the 28th Annual Computer Security Ap-
plications Conference (ACSAC ’12). ACM, New York, NY, USA, 1–10.
https://doi.org/10.1145/2420950.2420952

[2] Slovakia’s National Security Authority. 2017. skcsirt-sa-20170909-
pypi. (Sep 2017). http://www.nbu.gov.sk/skcsirt-sa-20170909-pypi/
Accessed: 2017-09-15.

[3] Mick Bauer. 2009. Paranoid penguin: AppArmor in Ubuntu 9. Linux
Journal 2009, 185 (2009), 9. http://www.linuxjournal.com/magazine/
paranoid-penguin-apparmor-ubuntu-9 Accessed: 2016-09-30.

[4] Andrea Bittau, Petr Marchenko, Mark Handley, and Brad Karp. 2008.
Wedge: Splitting Applications into Reduced-privilege Compartments.
In Proceedings of the 5th USENIX Symposium on Networked Systems
Design and Implementation (NSDI’08). USENIX Association, Berkeley,
CA, USA, 309–322. http://dl.acm.org/citation.cfm?id=1387589.1387611

[5] Oscar Bolmsten. 2017. Looks like this npm package is stealing env
variables on install. (Aug 2017). https://twitter.com/o_cee/status/
892306836199800836 Accessed: 2017-08-11.

[6] Cristian Cadar, Daniel Dunbar, and Dawson Engler. 2008. KLEE: Unas-
sisted and Automatic Generation of High-coverage Tests for Complex
Systems Programs. In Proceedings of the 8th USENIX Conference on
Operating Systems Design and Implementation (OSDI’08). USENIX As-
sociation, Berkeley, CA, USA, 209–224. http://dl.acm.org/citation.cfm?
id=1855741.1855756

[7] Mircea Cadariu, Eric Bouwers, Joost Visser, and Arie van Deursen.
2015. Tracking known security vulnerabilities in proprietary software
systems. In Software Analysis, Evolution and Reengineering (SANER),
2015 IEEE 22nd International Conference on. IEEE, 516–519.

[8] Haogang Chen, Yandong Mao, Xi Wang, Dong Zhou, Nickolai Zel-
dovich, and M. Frans Kaashoek. 2011. Linux Kernel Vulnerabilities:
State-of-the-art Defenses and Open Problems. In Proceedings of the
Second Asia-Pacific Workshop on Systems (APSys ’11). ACM, New York,
NY, USA, Article 5, 5 pages. https://doi.org/10.1145/2103799.2103805

[9] Scott A. Crosby and Dan S. Wallach. 2003. Denial of Service via Al-
gorithmic Complexity Attacks. In Proceedings of the 12th Conference
on USENIX Security Symposium - Volume 12 (SSYM’03). USENIX Asso-
ciation, Berkeley, CA, USA, 3–3. http://dl.acm.org/citation.cfm?id=
1251353.1251356

[10] Edsger W Dijkstra. 1982. On the role of scientific thought. In Selected
writings on computing: a personal perspective. Springer, 60–66.

[11] Marius Eriksen. 2013. Your Server As a Function. In Proceedings of the
Seventh Workshop on Programming Languages and Operating Systems
(PLOS ’13). ACM, New York, NY, USA, Article 5, 7 pages. https://doi.
org/10.1145/2525528.2525538

[12] Cedric Fournet, Nikhil Swamy, Juan Chen, Pierre-Evariste Dagand,
Pierre-Yves Strub, and Benjamin Livshits. 2013. Fully Abstract Compi-
lation to JavaScript. In Proceedings of the 40th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL ’13).
ACM, New York, NY, USA, 371–384. https://doi.org/10.1145/2429069.
2429114

[13] Martin Fowler and James Lewis. 2014. Microservices. (2014). http:
//martinfowler.com/articles/microservices.html Accessed: 2015-02-17.

[14] Ghost. Ghost Publishing Platform. http://ghost.org/. (????). Accessed:
2017-01-01.

[15] Khilan Gudka, Robert N.M. Watson, Jonathan Anderson, David Chis-
nall, Brooks Davis, Ben Laurie, Ilias Marinos, Peter G. Neumann, and
Alex Richardson. 2015. Clean Application Compartmentalization with
SOAAP. In Proceedings of the 22Nd ACM SIGSAC Conference on Com-
puter and Communications Security (CCS ’15). ACM, New York, NY,
USA, 1016–1031. https://doi.org/10.1145/2810103.2813611

49

PLOS’17, October 28, 2017, Shanghai, China N. Vasilakis et al.

[16] Philipp Haller and Martin Odersky. 2009. Scala Actors: Unifying
Thread-based and Event-based Programming. Theor. Comput. Sci. 410,
2-3 (Feb. 2009), 202–220. https://doi.org/10.1016/j.tcs.2008.09.019

[17] Scott Hendrickson, Stephen Sturdevant, Tyler Harter, Venkateshwaran
Venkataramani, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-
Dusseau. 2016. Serverless Computation with OpenLambda. In 8th
USENIX Workshop on Hot Topics in Cloud Computing (HotCloud 16).
USENIX Association, Denver, CO. https://www.usenix.org/conference/
hotcloud16/workshop-program/presentation/hendrickson

[18] Jorrit N. Herder, Herbert Bos, Ben Gras, Philip Homburg, and An-
drew S. Tanenbaum. 2006. MINIX 3: A Highly Reliable, Self-repairing
Operating System. SIGOPS Oper. Syst. Rev. 40, 3 (July 2006), 80–89.
https://doi.org/10.1145/1151374.1151391

[19] Michael J. Accetta, Robert Baron, William J. Bolosky, David B. Golub,
Richard F. Rashid, Avadis Tevanian, and Michael Wayne Young. 1986.
Mach: A New Kernel Foundation for UNIX Development. In USENIX
Summer Technical Conference. Usenix, 93–113. http://www.cs.ubc.ca/
~norm/508/2009W1/mach_usenix86.pdf

[20] Trishank Karthik Kuppusamy, Santiago Torres-Arias, Vladimir Diaz,
and Justin Cappos. 2016. Diplomat: Using Delegations to Protect
Community Repositories. In 13th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 16). USENIX Association,
Santa Clara, CA, 567–581. https://www.usenix.org/conference/nsdi16/
technical-sessions/presentation/kuppusamy

[21] Tobias Lauinger, Abdelberi Chaabane, Sajjad Arshad, William Robert-
son, ChristoWilson, and Engin Kirda. 2017. Thou Shalt Not Depend on
Me: Analysing the Use of Outdated JavaScript Libraries on the Web. In
Proceedings of the Network and Distributed System Security Symposium
(NDSS). San Diego, CA, USA.

[22] HenryM. Levy. 1984. Capability-Based Computer Systems. Butterworth-
Heinemann, Newton, MA, USA. http://www.cs.washington.edu/
homes/levy/capabook/

[23] Jochen Liedtke, Kevin Elphinstone, Sebastian Schonberg, Hermann
Hartig, Gernot Heiser, Nayeem Islam, and Trent Jaeger. 1997. Achieved
IPC performance (still the foundation for extensibility). In Operating
Systems, 1997., The Sixth Workshop on Hot Topics in. IEEE, 28–31.

[24] James Litton, Anjo Vahldiek-Oberwagner, Eslam Elnikety, Deepak
Garg, Bobby Bhattacharjee, and Peter Druschel. 2016. Light-Weight
Contexts: An OS Abstraction for Safety and Performance. In 12th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 16). USENIX Association, GA, 49–64. https://www.usenix.org/
conference/osdi16/technical-sessions/presentation/litton

[25] Jeremy Long. 2015. OWASP Dependency Check. (2015). https://
www.owasp.org/index.php/OWASP_Dependency_Check Accessed:
2017-02-17.

[26] Peter Loscocco and Stephen Smalley. 2001. Integrating Flexible Support
for Security Policies into the Linux Operating System. In Proceedings of
the FREENIX Track: 2001 USENIX Annual Technical Conference. USENIX
Association, Berkeley, CA, USA, 29–42. http://dl.acm.org/citation.cfm?
id=647054.715771

[27] Michael Maass. 2016. A Theory and Tools for Applying Sandboxes
Effectively. Ph.D. Dissertation. CMU.

[28] Dirk Merkel. 2014. Docker: Lightweight Linux Containers for Con-
sistent Development and Deployment. Linux J. 2014, 239, Article 2
(March 2014). http://dl.acm.org/citation.cfm?id=2600239.2600241

[29] James Mickens. 2014. Pivot: Fast, Synchronous Mashup Isolation Using
Generator Chains. In 2014 IEEE Symposium on Security and Privacy.
261–275. https://doi.org/10.1109/SP.2014.24

[30] Mark S Miller, Mike Samuel, Ben Laurie, Ihab Awad, and Mike Stay.
2008. Safe active content in sanitized JavaScript. Google, Inc., Tech.
Rep (2008).

[31] Sam Newman. 2015. Building Microservices. O’Reilly Media, Inc.
[32] npm, Inc. 2012. npm-shrinkwrap: Lock down dependency versions.

(2012). https://docs.npmjs.com/cli/shrinkwrap Accessed: 2017-02-03.

[33] Erlend Oftedal et al. 2016. RetireJS. (2016). http://retirejs.github.io/
retire.js/ Accessed: 2017-05-18.

[34] Niels Provos, Markus Friedl, and Peter Honeyman. 2003. Prevent-
ing Privilege Escalation. In Proceedings of the 12th Conference on
USENIX Security Symposium - Volume 12 (SSYM’03). USENIX Asso-
ciation, Berkeley, CA, USA, 16–16. http://dl.acm.org/citation.cfm?id=
1251353.1251369

[35] Eric Raymond. 1999. The cathedral and the bazaar. Knowledge, Tech-
nology & Policy 12, 3 (1999), 23–49.

[36] Luigi Rizzo. 2012. Netmap: a novel framework for fast packet I/O. In
21st USENIX Security Symposium (USENIX Security 12). 101–112.

[37] J. M. Rushby. 1981. Design and Verification of Secure Systems. In Pro-
ceedings of the Eighth ACM Symposium on Operating Systems Principles
(SOSP ’81). ACM, New York, NY, USA, 12–21. https://doi.org/10.1145/
800216.806586

[38] Sam Saccone. 2016. npm fails to restrict the actions of malicious npm
packages. https://www.kb.cert.org/vuls/id/319816. (2016). Accessed:
2017-06-05.

[39] Jerome H Saltzer and Michael D Schroeder. 1975. The protection of
information in computer systems. Proc. IEEE 63, 9 (1975), 1278–1308.

[40] Isaac Z. Schlueter et al. 2010. Node Package Manager. (2010). https:
//npmjs.com Accessed: 2017-02-17.

[41] Node Security. 2016. Continuous Security monitoring for your node
apps. https://nodesecurity.io/. (2016). Accessed: 2017-01-01.

[42] Jonathan S. Shapiro, Jonathan M. Smith, and David J. Farber. 1999.
EROS: A Fast Capability System. In Proceedings of the Seventeenth
ACM Symposium on Operating Systems Principles (SOSP ’99). ACM,
New York, NY, USA, 170–185. https://doi.org/10.1145/319151.319163

[43] Snyk. 2016. Find, fix and monitor for known vulnerabilities in Node.js
and Ruby packages. https://snyk.io/. (2016). Accessed: 2017-05-18.

[44] Deian Stefan, Edward Z. Yang, Petr Marchenko, Alejandro Russo, Dave
Herman, Brad Karp, and David Mazières. 2014. Protecting Users by
Confining JavaScript with COWL. In 11th USENIX Symposium on Op-
erating Systems Design and Implementation (OSDI 14). USENIX Associ-
ation, Broomfield, CO, 131–146. https://www.usenix.org/conference/
osdi14/technical-sessions/presentation/stefan

[45] Jeff Terrace, Stephen R. Beard, and Naga Praveen Kumar Katta. 2012.
JavaScript in JavaScript (js.js): Sandboxing Third-Party Scripts. In Pre-
sented as part of the 3rd USENIX Conference onWeb Application Develop-
ment (WebApps 12). USENIX, Boston, MA, 95–100. https://www.usenix.
org/conference/webapps12/technical-sessions/presentation/terrace

[46] Nikolai Philipp Tschacher. 2016. Typosquatting in Programming Lan-
guage Package Managers. Bachelor Thesis. University of Hamburg.

[47] Nikos Vasilakis, Ben Karel, and Jonathan M. Smith. 2015. From
Lone Dwarfs to Giant Superclusters: Rethinking Operating Sys-
tem Abstractions for the Cloud. In 15th Workshop on Hot Topics
in Operating Systems (HotOS XV). USENIX Association, Kartause
Ittingen, Switzerland. https://www.usenix.org/conference/hotos15/
workshop-program/presentation/vasilakis

[48] Robert Virding, Claes Wikström, and Mike Williams. 1996. Concurrent
Programming in ERLANG (2Nd Ed.). Prentice Hall International (UK)
Ltd., Hertfordshire, UK, UK.

[49] Ashley G Williams. 2016. Changes to npm’s unpub-
lish policy. http://blog.npmjs.org/post/141905368000/
changes-to-npms-unpublish-policy. (2016).

[50] Serdar Yegulalp. 2016. How one yanked JavaScript package
wreaked havoc. http://www.infoworld.com/article/3047177/javascript/
how-one-yanked-javascript-package-wreaked-havoc.html. (2016).

50

