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ABSTRACT
Perceived as a vast, interconnected graph of content, the reality

of the web is very different. Immense computational resources

are used to deliver this content and associated services. An even

larger pool of computing power is comprised by edge user devices.

This latent potential has gone unused. Ar frames the web as a

distributed computing platform, unifying processing and storage

infrastructure with a core programming model and a common set

of browser-provided services. By exposing the inherent capacities

to programmers, a far more powerful capability has been unleashed,

that of the Internet as a distributed computing system. We have

implemented a prototype system that, while modest in scale, fully

illustrates what can be realized.

CCS CONCEPTS
• Networks → World Wide Web (network structure); • Computer
systems organization → Peer-to-peer architectures; • Software
and its engineering → Ultra-large-scale systems; Distributed sys-
tems organizing principles;
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1 INTRODUCTION
“The Internet as a computer. . . how do you write programs that
compute over the Internet?”

Barbara Liskov, ACM Turing Award Lecture, 2008

The heterogeneity of user devices and the need for applications

(e.g., video or sophisticated graphics) have forced web browsers

to assume a role resembling an operating system, with support

for concurrency, resource management, and protected application

multiplexing. Web browsers today feature several layers of high-

performance machinery such as just-in-time compilers and state-

of-the-art garbage collectors. Web applications have access to the

same features as native applications do, including parallelism, am-

ple memory and storage, and specialized hardware acceleration.

JavaScript, the programming language underpinning web appli-

cations, stands alone in both its ubiquity and portability across

browsers and platforms. These characteristics make the web an

ideal basis for a distributed computing platform.
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Figure 1: The core of Ar is an extensible service architec-
ture, which is then used to bundle a small set of built-in
services. These services are instantiated at the level of node
groups (e.g., local, global).

Using the web as a distributed computing platform, however,

requires solving a fundamental problem: unifying individual accessi-

ble resources into a useful and coherent programming environment

that supports general-purpose computing. Prior attempts [7, 8, 19,

26] were limited by either (i) focusing on ad hoc programs [7, 19]

that specialize on a particular workload (e.g., prime-number genera-

tion), or (ii) requiring significant server-side support [8, 26]. Solving

this problem buys us access to Internet-scale resources at the cost

of creating a completely new programming infrastructure.

This paper describes Ar , a novel programming environment

embedded in JavaScript execution engines that achieves the goal

of using the web as a distributed computing platform. Ar lifts
capabilities locally available by web browser engines (e.g., storage,
execution) to their distributed equivalents (Fig. 1). To lift local

capabilities, it provides the essential infrastructure for building

an extensible architecture of services. This infrastructure is then

used to create a small library of built-in services that come bundled

with the system and support its critical functions. While Ar is

developed (and presented here) directly in JavaScript, its ideas are

not language-specific.

The paper is structured as follows: §2 introduces Ar from the

perspective of the programmer; §3 presents the design of the service

architecture; §4 outlines the prototype implementation and prelim-

inary results; §5 discusses practical challenges and limitations; §6

compares with related work.

2 PROGRAMMER PERSPECTIVE
From the perspective of the programmer, Ar is a stateful service

library namespaced under the ar object. At the top-level, ar ex-

poses a map from groups of nodes to services running on these

groups. Services are objects combining internal state with a set of

methods. As a concrete example, ar.cx1.storage.get will call

the get method on the storage service of the cx1 group of nodes.

To launch a node, end-users simply visit a URL from their web

browser—for example, by following an email link or using a book-

mark. The browser fetches and executes system code, effectively

https://doi.org/10.1145/3213344.3213346
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Figure 2: Node startup, from client/server to peer-to-peer.

1 ar.sensors.tasks.exec (() => {

2 let update = () => {

3 if (ctx.temp > ar.local.mem["max"].temp)

4 ar.local.mem["max"] = ctx;

5 };

6 ar.local.packages.load('clima ', (_, clima) => {

7 clima.readTemp(clima.CELSIUS , (_, temp) => {

8 c = {temp: temp , id: ar.local.info.getNode ()};

9 ar.desktop.tasks.exec(update , {ctx: c});

10 });

11 });

12 });

Listing 1: Using Ar to record the maximum temperature
across a network of sensor devices.

booting the system, its built-in services, and some built-in appli-

cation programs such as the interactive shell. As soon as the node

has completed booting, it communicates with its peers to register

with them, receive updates, and generally interact with the rest of

the deployment (Fig 2).

Detailed Example: Sensor Data Aggregation
Consider the problem of recording the highest temperature across

a network of sensor nodes. The Ar programmer would write code

similar to the one in List. 1, interactively or as part of a script loaded

by an HTTP response. Error handling is omitted (by convention,

we use underscores to bind Error values that will be discarded).

This program loads and executes a function on every node that

is part of the sensors group (l.1–11). Each node loads a module

(l.6) to read the temperature sensor (l.7), and executes a function

update on desktop, a group that contains only a single node (l.9).

The update function (l.2–5) updates a memory location with the

highest temperature recorded.

A few details of the underlying environment are worth noting:

(i) first-class support for function distribution, meaning that func-

tions and their context can be transmitted across nodes like any

other well-typed value, (ii) a cooperative concurrency model for

individual nodes, meaning that code decides when to yield, (iii)

an asynchronous, continuation-passing call style that hides the

distinction between local and remote execution, and (iv) the ability

to dynamically rebind the ar object in the context of a function,

effectively limiting the incoming code’s access to built-in capabili-

ties. Notably, the absence of the first two features would mean that

the state update would require a transaction to safeguard against

race conditions from competing nodes. In Ar , however, users can

send several updates in a single function that is guaranteed to run

atomically.

Further Illustrative Examples
Many classes of applications fit well into the Ar model. In each of

these three “micro-examples”, the user shares a URL similar to the

one shown below:

z5.kzuse.users.ar.io/CalcSpace?particles =3M

Other users can share computing resources by clicking on the

URL. The path of the URL is specified with the help of a service

responsible for exposing other services. The domain name and

other technical details (e.g., NAT hole punching) can be handled by

a centralized group of servers (as in our detailed example).

Distributed Proof of Work Users write a procedure that calls

a cryptographic hash function using different inputs in an attempt

to find a specific pattern (e.g., number of leading zeros). In a semi-

centralized case, the node providing the code acts as a controller

dividing the search space by the workers. In a more decentralized

fashion, each worker subdivides the available search space so that

it can recursively hand off chunks to newly-joined, subordinate

workers.

Volunteer ComputingAs a generalization of the previous case,
users write a module that donates volunteer resources by period-

ically contacting peers of a master group for receiving jobs and

reporting on results. The distributed storage system can be used

to read input data (e.g., images) and write results. End-users can

choose to expose attenuated capabilities to the underlying resources

of their pool by providing a proxy to the Ar object.

Distributed Denial-of-Service Users can setup an DDoS ex-

periment by sharing a procedure that floods a machine with super-

fluous requests—for example, to explore DoS mitigation in server-

like environments [10, 27]. Since Ar running on individual nodes

provides a cooperatively scheduled environment, user code needs

to plan for periodic (but tiny—e.g., 1ms) back-off to check event

queues for incoming coordination messages.

Service Interface
Each service in Ar exposes a set of methods. The argument evalu-

ation strategy is strict (eager) and call-by-value: given an argument,

the system will evaluate it, serialize it, and possibly send it to a re-

mote node. There is no distinction between calling a service method

and sending a message to a service. Service methods conform to

following interface type:

1 operation :: Optional Value ->

2 Optional Options ->

3 Optional (Error -> [Value] -> ())

4 -> ()

The first argument represents some state and can be any well-

typed value in the programming language (e.g., exec in List. 1 is

supplied a function).

The second argument express specific quality-of-service require-

ments including service-specific knobs for tuning inescapable trade-

offs [1, 13, 17] in distributed systems. Configurations can be set at

a fine granularity—that of individual calls or messages—and are

themselves regular objects: users can always group configurations
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together, store them in the distributed storage system, assign them

to variables, and reuse them on multiple messages for entire appli-

cations.

The third argument is an optional continuation function that is

called when the operation completes. This function has a special

type: it takes two arguments—a possible error and a possible list of

results, both of which will be provided by the first function. Error

value of null signals expected list of results.

Other Abstractions
Node groups and protection capabilities are fundamental system

services not detailed in this document; we outline them here.

Node Groups Ar unifies heterogeneous nodes, virtual or phys-

ical computing machines of varying capabilities. Nodes implement

the abstraction of a computing device (with their own storage, pro-

cessing etc.). In practice, they correspond to a web browser tab

which in turn usually corresponds to an operating system process.

Users can easily simulate distributed operation on a single physical

computer by opening multiple browser tabs.

Nodes are organized into non-disjoint sets: the same node can ex-

ist in and be addressable through multiple groups. Explicit support

for node groups means that groups can provide tailored services

based on the capabilities and structure of the underlying nodes as

well as the needs of the applications executing atop. Addressing

groups of nodes as a single entity is the common pattern, with

the possible exception of a self singleton group that refers to the

current node.

ProtectionAflexible protection scheme based on sandboxes and

object capabilities allows fine-grained access control on resources

made available by users. A sandbox service can be used to launch

incoming scripts into dedicated compartments that, by default,

do not provide access to the system’s internal structures. Using

object capabilities users can attenuate or even rewire access to any

functionality available by the system—including built-in and add-

on services. This is done by binding custom values to the ar name

in the context of a sandbox; this capability is further automated by

a policy expression language that groups common preset values

(e.g., invoking local-only storage even when global storage is

invoked). As a result, users can share computational resources by

running tasks from other users on their own infrastructure.

3 SERVICE ARCHITECTURE
This section describes the core internals, an extensible service ar-

chitecture and how it is used to create a small library of built-in

services.

Core System The core of Ar is a routing table. Routing is

achieved using a function that takes as an argument a message

and passes that message to the service responsible for handling it.

A message can encode any well-typed language value, including

primitives, functions, and objects. The lower-level internals of the

core recognize a couple more types that skip or modify parsing;

notable examples include streams of objects, raw-data messages,

and raw-data streams.

Messages encoding functions are particularly interesting, as func-

tions provide the necessary support to ship services among nodes.

As a result, the aforementioned routing table can be extended dur-

ing runtime by registering more services. In fact, built-in services

are also loaded and instantiated during runtime, often by requesting

the majority of their functionality from peer nodes at the edge.

The vast majority of the system’s functionality beyond the rout-

ing function comes from services. Services are collections of func-

tions along with control-level internal state. These functions can be

configured to tune trade-offs related to distribution, scale, and het-

erogeneity (see Options in “Service Interface”); part of the internal

state holds the set of available, default, and set parameters.

Service Binding Services are loaded, instantiated, and bound

at the level of individual groups. When a node group is asked to

bind a new service, Ar starts by locating and loading a service

template. It then adds hooks, carefully-placed variable names in

scope, for binding values later; for example, it creates a variable

named ar within the scope of the service. After loading the code, it

uses introspection to discover the set of available parameters, their

sets of possible values, and documentation associated with both.

It populates the default values for all these parameters based on a

combination of user inputs—e.g., upon group creation and service

instantiation. Finally, it creates the correct ar value depending on
the capabilities available to the newly instantiated service, and

binds it to the ar variable.
Messages arriving for services with identical names bound to

different node groups will probably get serviced by a different

instance of the same service template. This is not certain: as users

are free to bind any value they want to a service name, the service

might not be an instance of the same template, or it might be the

exact same instance. The core routing function described earlier is

also exposed as a service instantiated for each node group.

Standard LibraryThus far, system services have been described

as a more general architecture and associated runtime transforma-

tions. Table 1 presents a set of example services that come with Ar

and provide foundational functionality. The following paragraphs

outline a small set of them; they do not cover the technical details,

as these services are replaceable, nor are they intended to be taken

as a complete list, as the system is extensible.

One of the most important set of services Ar provides is dis-

tributed storage capabilities. A set of services offer the abstraction

of a single-dimensional key-value store that partitions data between

all nodes in a group. Both in-memory and persistent operations are

supported as well as tunable indexing, replication, and consistency

guarantees at the level of individual objects. Unispace [28], a multi-

dimensional scheme based on hyperspace hashing [12], supports

efficient queries on secondary properties. Storage services are used

extensively by Ar itself to store and query internal structures.

From the point of view of the user, the interface supports a very

small number of (four) operations, significantly simplifying state

management.

Another important set of services provides first-class support

for node and node group management. As described earlier, node

groups hold a somewhat central position in Ar for tackling the

trade-off between generality, scalability, and accessibility. Using

these services, users (and other services) can process topologies and

define dynamic overlays that can change at runtime for different

phases of a single task. The underlying node list for each node
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Service Use Example Call Representative Options

mem Distributed shared memory get({an:"obj"}, {key: "0c3f"}, l) key, replication, consistency

State fs Persistent key-value storage put(obj, {replication: 3}) — ” —, cache

uni Persistent multi-dimensional storage search({dimensions: ["id"], val: "1"}) — ” —, dimensions, keys

nodes Node information and management spawn({number: 3, peer: local.node}) halt, peer, number, version

Nodes groups Node group info. and management create({name: "primegen", inherit: []}) name, services, inherit

service Service and instantiation infrastructure wrap({methods: ["get", "put"]}) query, constructor, methods

task Task management exec(pow, {nodes: "first", args: args}) nodes, replicas, completion

Execution sandbox Software-based isolation primitives run(f, {id: "s1", ctx: {log: false}}) globals, context, maxTime

modules Module fetch/share get("crawler", {source: "local"}) interface, source, repo

message Scalable communication primitives send({a: "msg"}, {order: false}) order, consistency, path,

Comm/on request Request-oriented communication head("http://up.ar.net", null) path, domain, type, stream,

routes Bidirectional mapping of names to services put(add, {path: "/add"}) path, access-control

partition Predicate-based k-top nodes put(obj, {key: "k", top: 3, type: "any"}) selection, top, type

Support info Information on underlying infrastructure get({keys: /cpu/i, summary: true}) summary, keys, values

config Low-level configuration get("version") persist

events Interrupt event bus on("peer-down", (v) =>{v.f()}) (no callback)

Utility log Distributed logging infrastructure warn("result", "was", 1 + 2) (varargs; no callback)

doc Documentation capabilities get(/ar.$/, {module: "services"}) module, code, other

Table 1: Example built-in services; example calls take an asynchronous continuation function as additional argument.

supports time-travelling so that services bound with a group can

query the state of Ar in the past. When the topology of a group

changes (e.g., node failure), group services send upcalls to interested
services, which register the transition and adapt accordingly.

Another group of services is related to distributed code loading

and execution. As alluded to, earlier, users can load code dynami-

cally on multiple nodes in the system. Automated runtime transfor-

mations are used to address various problems of distribution. For

example, users can automatically extract an object capturing the

programming interface (API) of a remote program or library; this

object hides remote and provides the illusion of local invocation.

Users can schedule general purpose programs whose components

are distributed functions, ship functions to data, or schedule depen-

dencies between functions executing concurrently. As described in

“Service Binding”, the system is fully dynamic: there is therefore no

notion of installation and any code about to execute can be fetched

dynamically. A distributed package manager simplifies fetching

code and dealing with dependencies.

Communication services give applications direct access to com-

munication within a group. Applications can register custom own

paths in the routing table as inboxes for the delivery of messages.

They support various communication semantics (e.g., multicast,

anycast, point-to-point) and message reliability options (e.g., at-
least-one, ordered, at-most-once).

Support services generally provide foundational support to other

services but are rarely used standalone. For example, a map of the

underlying node capabilities is used when spawning nodes and

rendez-vous partitioning is used in some of the storage services.

Several utility services complete the standard library. For example,

a group-based event bus provides the ability to emit events and

register event handlers.

4 PRELIMINARY EVALUATION
We are in the process of building a prototype implementation of

the ideas described in this paper. Here we present preliminary

results on a few aspects of the system under development. These

are intended to show feasibility and potential, rather than draw

final conclusions.

Implementation Services in our prototype are bound statically

and ship along with the core of system. They are split between

local and global groups; there is no support for group instantia-

tion yet. The current version of the system is a little over 5K lines

of ECMAScript v5.1 (ES5) code. Additionally, there are libraries for

supporting the user interface (e.g., interactive shell—1.1K lines of

code). We refrained from using ES6 features beyond arrow func-

tions to simplify the serialization and de-serialization infrastructure;

fully-supporting ES6 is mostly a matter of engineering effort.

Experiment Setup The majority of the system has been im-

plemented and tested on a portable computer with four 1.1GHz

CPUs, 8GB LPDDR3 SDRAM at 1600MHz, and 256GB of PCIe 2.0

(5.0 GT/s) storage. This hardware environment setup is in line with

Ar ’s goal of unifying commodity devices at the edge.

For testing operation on the web browser, we use Chrome ver-

sion 61.0.3163.100; for “headless” operation, we run the system on

Node.js [9] bundled with V8 v6.1.534.48, LibUV v1.15.0, and stan-

dard library v8.9.3. For setup-related experiments, we host a copy of

all software on a server on the same 10MBps network to minimize

wide-area inconsistencies, Experiments unrelated to system setup

were run on a single machine.

Setup Time In the first experiment, we measure the time re-

quired to setup a three-node distributed environment. We launch

the system from a web-browser with a freshly-cleared cache and

measure various latencies.

For the first node, as Ar is not resident in the web browser’s

cache, it takes a total 218.93ms to fetch the code and complete the

bootup process that includes instantiating services and launching

the shell. A total of 92.63ms was required to retrieve the code:

0.19ms for the request, 17.31ms waiting time until the receipt of

the first byte, and 75.57ms for content download. It takes another

126.32ms for the startup process to complete, at which point the

user has a shell running.

After the startup completion event, the default handler from

the startup script asks the system to spawn two new nodes in

separate tabs in the background. For these two nodes, and any

subsequent ones, the system code is resident in the browser’s cache.

This lowers fetching and loading times significantly (i.e., by 3-4
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orders of magnitude), but adds 92.81ms for spawning a fresh process

per tab. The combined total is about half a second (404.55ms).

Memory Footprint Launching Ar almost always starts three

nodes. On desktops this results in somwehat generous amounts

of memory: the primary node that loads the shell-related modules

occupies 18.6MB and the other two 17.3MB. We were able, however,

to run an instance of the system with all of its services in a headless

browser with under 1MB of memory.

Runtime Performance To get a sense of distributed execution
overheads, we developed four trivially-distributed programs—word-

count, grep, top-n, and n-grams—and run them using 1MB and 1GB

input files. Performance is comparable with Unix pipelines.

We used perf sampling (with a sampling rate of 1ms) to better

understand the most frequent code-paths taken. 98.94% of the time,

the system was found in systemic overheads: 76.18% coming from

processing TCP streams (e.g., calls to __libc_close) and (18.26%)

from system calls (e.g., allocation, spin locks, CSK accepts). Ar ’s

generic service template, the prototype object from where all

services inherit, was the most heavily invoked function unrelated

to HTTP and averaging 1.09% of the samples.

Elasticity To quantify the systemâĂŹs elasticity (responsive-

ness to to changing workloads) we performed two experiments that

spawned 5K virtual nodes on a single machine.

In the first experiment, we launch each node with a startup

configuration that runs a single “node-shutdown” command when

the bootup process completes. We run this sequentially in a loop

where we spawn a node only after the previous node has shutdown.

On average, “blinking” an Ar node takes a total of 98ms, most of

which is spent in systemic-level overheads (i.e., spawning process,

loading source).

In the second experiment, we do not shut down previously

spawned nodes. Starting 5K nodes sequentially takes 362.466s (an

average of 72.5ms/node). If, however, we spawn 5K nodes in parallel,

we get a total of 15.403s (an average of 3ms/node).

5 CHALLENGES AND LIMITATIONS
This section discusses practical challenges and limitations in the

development of the system.

Direct vs. CPS Functions that do not perform I/O, such as

Math.add, follow a direct call style; functions that do I/O, such as

storage.get follow an asynchronous, continuation-passing style

(CPS). This mismatch, inherently present in modern web browsers,

is a serious threat to distribution transparency as the calling style

depends on the relative location of the function. How can the system

transform caller code automatically when a pure function migrates

to a remote node and needs to be called in CPS?

Storage Types Web browsers today feature various types of

storage; they can be broken down into many different types (e.g.,
persistent, temporary), but not all of them are available everywhere.

To make things more complicated, these different types have dras-

tically different size limits—some of which are configured by the

end-user. Low capability with custom runtimes (e.g., Tessel2 [25],
Espruinos [23]) do not even offer standardized APIs. How can the

system abstract over all these types of storage while notifying the

applications?

Node MultiplexingWeb browsers break up storage based on

origin, the name of the domain and sub-domain fromwhere the code

was fetched. In our setting, all tabs are served from the same origin.

This is rather unusual for web applications: how does the browser

know that two different Ar instances need to access different

storage?

Value Serialization Ar needs the ability to serialize any well-

typed value expressible in JavaScript; however, JSON, JavaScript’s

native data interchange format, does not support encoding arbitrary

language values: cycles within an object are lost, there is no syntax

for function literals, and descriptions of properties (e.g., ownership,
visibility, writability) stemming directly from the language specifi-

cation are not captured. How can the system communicate such

values, including function closures whose values are bound during

runtime?

Security Ar offers improved security to resource-donors as

they run distributed applications in a sandboxed environment. How-

ever, donors can inspect or alter data and computation from other

users. These are known issues in the volunteer-computing literature.

Could the system infer information about the intended semantics

of distributed applications (e.g., deterministic computation) or offer

a library of automated runtime transformations for dealing with

these concerns?

6 RELATEDWORK
Ar resembles both conventional and distributed operating systems

in its explicit statefulness; the state of the programmatic library is

distributed across multiple computers [6, 20, 21, 29].

Applications in Ar are not language-agnostic. In language-

based distributed systems [2, 5, 15], applications use the same pro-

gramming language abstractions and bind to the standard library,

use programmatic runtime transformations to manipulate state and

interfaces, and exploit language-based safety for protection. Similar

to Ar , Emerald [5] emphasized prototype-based object mobility

and runtime performance of individual nodes. Argus [15] intro-

duced asynchronous interfaces to unify local and remote execution.

Ar supports state replication, but lacks Argus’ support for trans-

actions. The cooperative concurrency model and first-class support

for functions provide partial compensation.

Ar has the additional advantage of runtime extensibility, some-

what like extensible micro-kernels [4], but with built-in introspec-

tion [3] and explicit support for service naming [20].

Recent proposals [18, 24] to revisit design decisions behind older

distributed operating systems and language runtimes have appeared

as consequences of several decades of technology advances; Ar ’s

new approach is building a distributed, language-based operating

system for the web. It offers a viable transition path, as it allows

users to dispense with the Unix abstractions and POSIXAPI without

necessarily losing all forms of backward-compatibility.

The idea of using overlays to maintain such a delicate balance

has been attempted before with systems [5, 11, 15]. Inferno [11]

was a very similar approach: it proposed portability across vari-

ous environments (e.g., standalone and hosted), used a just-in-time

compiler as its kernel, and, like Plan 9 [22], used filesystem names-

paces similar to the dynamic variable (re-)binding presented in

Section 2. However, instead of following Limbo’s CPS-inspired
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preemptive concurrency model and synchronous channels, Ar

supports an Actor-like cooperative concurrency model and asyn-

chronous messages-passing.

Researches have proposed the use of the web for volunteer-

computing applications [14, 16], but these applications solve a par-

ticular problem or class of problems. Our proposal is somewhat

antithetical, in the sense that it aims at a general-purpose environ-
ment. In such an environment, specialized applications can be used

as domain-specific modules.

7 CONCLUSION
This paper proposes using the web as a distributed computing plat-

form at the edge. Our proposed environment, Ar , aims to unify

individual accessible resources into a useful and coherent program-

ming environment that supports general-purpose computing. This

is achieved by providing the infrastructure for a pluggable service

architecture, which is then used to create and bundle a library of

built-in services. The resulting system lifts the capabilities locally

available by web browser engines to their distributed equivalents.
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